mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Break parser batches into sub-batches, sorted by length.
This commit is contained in:
parent
394633efce
commit
633a75c7e0
|
@ -9,6 +9,7 @@ from collections import Counter, OrderedDict
|
|||
import ujson
|
||||
import json
|
||||
import contextlib
|
||||
import numpy
|
||||
|
||||
from libc.math cimport exp
|
||||
cimport cython
|
||||
|
@ -27,7 +28,7 @@ from libc.string cimport memset, memcpy
|
|||
from libc.stdlib cimport malloc, calloc, free
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
|
||||
from thinc.extra.eg cimport Example
|
||||
from thinc.extra.search cimport Beam
|
||||
|
@ -288,6 +289,8 @@ cdef class Parser:
|
|||
zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
upper.is_noop = False
|
||||
print(upper._layers)
|
||||
print(upper._layers[0]._layers)
|
||||
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
|
@ -391,19 +394,22 @@ cdef class Parser:
|
|||
beam_density = self.cfg.get('beam_density', 0.0)
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
for docs in cytoolz.partition_all(batch_size, docs):
|
||||
docs = list(docs)
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(docs)
|
||||
beams = []
|
||||
else:
|
||||
beams = self.beam_parse(docs,
|
||||
beam_width=beam_width, beam_density=beam_density)
|
||||
parse_states = []
|
||||
for beam in beams:
|
||||
parse_states.append(<StateClass>beam.at(0))
|
||||
self.set_annotations(docs, parse_states)
|
||||
yield from docs
|
||||
for batch in cytoolz.partition_all(batch_size, docs):
|
||||
batch = list(batch)
|
||||
by_length = sorted(list(batch), key=lambda doc: len(doc))
|
||||
for subbatch in cytoolz.partition_all(32, by_length):
|
||||
subbatch = list(subbatch)
|
||||
if beam_width == 1:
|
||||
parse_states = self.parse_batch(subbatch)
|
||||
beams = []
|
||||
else:
|
||||
beams = self.beam_parse(subbatch,
|
||||
beam_width=beam_width, beam_density=beam_density)
|
||||
parse_states = []
|
||||
for beam in beams:
|
||||
parse_states.append(<StateClass>beam.at(0))
|
||||
self.set_annotations(subbatch, parse_states)
|
||||
yield from batch
|
||||
|
||||
def parse_batch(self, docs):
|
||||
cdef:
|
||||
|
@ -437,38 +443,22 @@ cdef class Parser:
|
|||
cdef np.ndarray token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
|
||||
cdef np.ndarray is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
|
||||
cdef np.ndarray scores
|
||||
cdef np.ndarray hidden_weights = numpy.ascontiguousarray(vec2scores._layers[-1].W.T)
|
||||
cdef np.ndarray hidden_bias = vec2scores._layers[-1].b
|
||||
|
||||
hW = <float*>hidden_weights.data
|
||||
hb = <float*>hidden_bias.data
|
||||
cdef int nr_hidden = hidden_weights.shape[0]
|
||||
c_token_ids = <int*>token_ids.data
|
||||
c_is_valid = <int*>is_valid.data
|
||||
cdef int has_hidden = not getattr(vec2scores, 'is_noop', False)
|
||||
cdef int nr_step
|
||||
while not next_step.empty():
|
||||
nr_step = next_step.size()
|
||||
if not has_hidden:
|
||||
for i in cython.parallel.prange(nr_step, num_threads=6,
|
||||
nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, nr_class, nr_feat, nr_piece)
|
||||
else:
|
||||
hists = []
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
st.set_context_tokens(&c_token_ids[i*nr_feat], nr_feat)
|
||||
self.moves.set_valid(&c_is_valid[i*nr_class], st)
|
||||
hists.append([st.get_hist(j+1) for j in range(8)])
|
||||
hists = numpy.asarray(hists)
|
||||
vectors = state2vec(token_ids[:next_step.size()])
|
||||
if self.cfg.get('hist_size'):
|
||||
scores = vec2scores((vectors, hists))
|
||||
else:
|
||||
scores = vec2scores(vectors)
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(nr_step):
|
||||
st = next_step[i]
|
||||
guess = arg_max_if_valid(
|
||||
&c_scores[i*nr_class], &c_is_valid[i*nr_class], nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(st, action.label)
|
||||
st.push_hist(guess)
|
||||
for i in cython.parallel.prange(nr_step, num_threads=3,
|
||||
nogil=True):
|
||||
self._parse_step(next_step[i],
|
||||
feat_weights, hW, hb, nr_class, nr_hidden, nr_feat, nr_piece)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
|
@ -528,24 +518,33 @@ cdef class Parser:
|
|||
return beams
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat, int nr_piece) nogil:
|
||||
const float* feat_weights, const float* hW, const float* hb,
|
||||
int nr_class, int nr_hidden, int nr_feat, int nr_piece) nogil:
|
||||
'''This only works with no hidden layers -- fast but inaccurate'''
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class * nr_piece, sizeof(float))
|
||||
vector = <float*>calloc(nr_hidden * nr_piece, sizeof(float))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(scores,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_class * nr_piece)
|
||||
sum_state_features(vector,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_hidden * nr_piece)
|
||||
for i in range(nr_hidden):
|
||||
feature = Vec.max(&vector[i*nr_piece], nr_piece)
|
||||
for j in range(nr_class):
|
||||
scores[j] += feature * hW[j]
|
||||
hW += nr_class
|
||||
for i in range(nr_class):
|
||||
scores[i] += hb[i]
|
||||
self.moves.set_valid(is_valid, state)
|
||||
guess = arg_maxout_if_valid(scores, is_valid, nr_class, nr_piece)
|
||||
guess = arg_max_if_valid(scores, is_valid, nr_class)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
state.push_hist(guess)
|
||||
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(vector)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
|
|
Loading…
Reference in New Issue
Block a user