mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge pull request #5833 from explosion/feature/scorer-adjustments
This commit is contained in:
commit
6365837ca9
|
@ -1099,6 +1099,7 @@ class Language:
|
|||
batch_size: int = 256,
|
||||
scorer: Optional[Scorer] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
scorer_cfg: Optional[Dict[str, Any]] = None,
|
||||
) -> Dict[str, Union[float, dict]]:
|
||||
"""Evaluate a model's pipeline components.
|
||||
|
||||
|
@ -1109,6 +1110,8 @@ class Language:
|
|||
will be created.
|
||||
component_cfg (dict): An optional dictionary with extra keyword
|
||||
arguments for specific components.
|
||||
scorer_cfg (dict): An optional dictionary with extra keyword arguments
|
||||
for the scorer.
|
||||
RETURNS (Scorer): The scorer containing the evaluation results.
|
||||
|
||||
DOCS: https://spacy.io/api/language#evaluate
|
||||
|
@ -1126,8 +1129,10 @@ class Language:
|
|||
raise TypeError(err)
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
if scorer_cfg is None:
|
||||
scorer_cfg = {}
|
||||
if scorer is None:
|
||||
kwargs = component_cfg.get("scorer", {})
|
||||
kwargs = dict(scorer_cfg)
|
||||
kwargs.setdefault("verbose", verbose)
|
||||
kwargs.setdefault("nlp", self)
|
||||
scorer = Scorer(**kwargs)
|
||||
|
|
|
@ -34,7 +34,7 @@ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
|
||||
@Language.factory(
|
||||
"parser",
|
||||
assigns=["token.dep", "token.is_sent_start", "doc.sents"],
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
default_config={
|
||||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
|
@ -120,7 +120,8 @@ cdef class DependencyParser(Parser):
|
|||
return dep
|
||||
results = {}
|
||||
results.update(Scorer.score_spans(examples, "sents", **kwargs))
|
||||
results.update(Scorer.score_deps(examples, "dep", getter=dep_getter,
|
||||
ignore_labels=("p", "punct"), **kwargs))
|
||||
kwargs.setdefault("getter", dep_getter)
|
||||
kwargs.setdefault("ignore_label", ("p", "punct"))
|
||||
results.update(Scorer.score_deps(examples, "dep", **kwargs))
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
|
226
spacy/scorer.py
226
spacy/scorer.py
|
@ -1,55 +1,61 @@
|
|||
from typing import Optional, Iterable, Dict, Any, Callable, Tuple, TYPE_CHECKING
|
||||
import numpy as np
|
||||
|
||||
from .gold import Example
|
||||
from .tokens import Token, Doc
|
||||
from .errors import Errors
|
||||
from .util import get_lang_class
|
||||
from .morphology import Morphology
|
||||
|
||||
if TYPE_CHECKING:
|
||||
# This lets us add type hints for mypy etc. without causing circular imports
|
||||
from .language import Language # noqa: F401
|
||||
|
||||
|
||||
DEFAULT_PIPELINE = ["senter", "tagger", "morphologizer", "parser", "ner", "textcat"]
|
||||
|
||||
|
||||
class PRFScore:
|
||||
"""
|
||||
A precision / recall / F score
|
||||
"""
|
||||
"""A precision / recall / F score."""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.tp = 0
|
||||
self.fp = 0
|
||||
self.fn = 0
|
||||
|
||||
def score_set(self, cand, gold):
|
||||
def score_set(self, cand: set, gold: set) -> None:
|
||||
self.tp += len(cand.intersection(gold))
|
||||
self.fp += len(cand - gold)
|
||||
self.fn += len(gold - cand)
|
||||
|
||||
@property
|
||||
def precision(self):
|
||||
def precision(self) -> float:
|
||||
return self.tp / (self.tp + self.fp + 1e-100)
|
||||
|
||||
@property
|
||||
def recall(self):
|
||||
def recall(self) -> float:
|
||||
return self.tp / (self.tp + self.fn + 1e-100)
|
||||
|
||||
@property
|
||||
def fscore(self):
|
||||
def fscore(self) -> float:
|
||||
p = self.precision
|
||||
r = self.recall
|
||||
return 2 * ((p * r) / (p + r + 1e-100))
|
||||
|
||||
def to_dict(self):
|
||||
def to_dict(self) -> Dict[str, float]:
|
||||
return {"p": self.precision, "r": self.recall, "f": self.fscore}
|
||||
|
||||
|
||||
class ROCAUCScore:
|
||||
"""
|
||||
An AUC ROC score.
|
||||
"""
|
||||
"""An AUC ROC score."""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.golds = []
|
||||
self.cands = []
|
||||
self.saved_score = 0.0
|
||||
self.saved_score_at_len = 0
|
||||
|
||||
def score_set(self, cand, gold):
|
||||
def score_set(self, cand, gold) -> None:
|
||||
self.cands.append(cand)
|
||||
self.golds.append(gold)
|
||||
|
||||
|
@ -70,51 +76,52 @@ class ROCAUCScore:
|
|||
class Scorer:
|
||||
"""Compute evaluation scores."""
|
||||
|
||||
def __init__(self, nlp=None, **cfg):
|
||||
def __init__(
|
||||
self,
|
||||
nlp: Optional["Language"] = None,
|
||||
default_lang: str = "xx",
|
||||
default_pipeline=DEFAULT_PIPELINE,
|
||||
**cfg,
|
||||
) -> None:
|
||||
"""Initialize the Scorer.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#init
|
||||
"""
|
||||
self.nlp = nlp
|
||||
self.cfg = cfg
|
||||
|
||||
if not nlp:
|
||||
# create a default pipeline
|
||||
nlp = get_lang_class("xx")()
|
||||
nlp.add_pipe("senter")
|
||||
nlp.add_pipe("tagger")
|
||||
nlp.add_pipe("morphologizer")
|
||||
nlp.add_pipe("parser")
|
||||
nlp.add_pipe("ner")
|
||||
nlp.add_pipe("textcat")
|
||||
nlp = get_lang_class(default_lang)()
|
||||
for pipe in default_pipeline:
|
||||
nlp.add_pipe(pipe)
|
||||
self.nlp = nlp
|
||||
|
||||
def score(self, examples):
|
||||
def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
|
||||
"""Evaluate a list of Examples.
|
||||
|
||||
examples (Iterable[Example]): The predicted annotations + correct annotations.
|
||||
RETURNS (Dict): A dictionary of scores.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score
|
||||
"""
|
||||
scores = {}
|
||||
|
||||
if hasattr(self.nlp.tokenizer, "score"):
|
||||
scores.update(self.nlp.tokenizer.score(examples, **self.cfg))
|
||||
for name, component in self.nlp.pipeline:
|
||||
if hasattr(component, "score"):
|
||||
scores.update(component.score(examples, **self.cfg))
|
||||
|
||||
return scores
|
||||
|
||||
@staticmethod
|
||||
def score_tokenization(examples, **cfg):
|
||||
def score_tokenization(examples: Iterable[Example], **cfg) -> Dict[str, float]:
|
||||
"""Returns accuracy and PRF scores for tokenization.
|
||||
|
||||
* token_acc: # correct tokens / # gold tokens
|
||||
* token_p/r/f: PRF for token character spans
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
RETURNS (dict): A dictionary containing the scores token_acc/p/r/f.
|
||||
RETURNS (Dict[str, float]): A dictionary containing the scores
|
||||
token_acc/p/r/f.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score_tokenization
|
||||
"""
|
||||
acc_score = PRFScore()
|
||||
prf_score = PRFScore()
|
||||
|
@ -145,16 +152,24 @@ class Scorer:
|
|||
}
|
||||
|
||||
@staticmethod
|
||||
def score_token_attr(examples, attr, getter=getattr, **cfg):
|
||||
def score_token_attr(
|
||||
examples: Iterable[Example],
|
||||
attr: str,
|
||||
*,
|
||||
getter: Callable[[Token, str], Any] = getattr,
|
||||
**cfg,
|
||||
) -> Dict[str, float]:
|
||||
"""Returns an accuracy score for a token-level attribute.
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
attr (str): The attribute to score.
|
||||
getter (callable): Defaults to getattr. If provided,
|
||||
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
|
||||
getter(token, attr) should return the value of the attribute for an
|
||||
individual token.
|
||||
RETURNS (dict): A dictionary containing the accuracy score under the
|
||||
key attr_acc.
|
||||
RETURNS (Dict[str, float]): A dictionary containing the accuracy score
|
||||
under the key attr_acc.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score_token_attr
|
||||
"""
|
||||
tag_score = PRFScore()
|
||||
for example in examples:
|
||||
|
@ -172,17 +187,21 @@ class Scorer:
|
|||
gold_i = align.x2y[token.i].dataXd[0, 0]
|
||||
pred_tags.add((gold_i, getter(token, attr)))
|
||||
tag_score.score_set(pred_tags, gold_tags)
|
||||
return {
|
||||
attr + "_acc": tag_score.fscore,
|
||||
}
|
||||
return {f"{attr}_acc": tag_score.fscore}
|
||||
|
||||
@staticmethod
|
||||
def score_token_attr_per_feat(examples, attr, getter=getattr, **cfg):
|
||||
def score_token_attr_per_feat(
|
||||
examples: Iterable[Example],
|
||||
attr: str,
|
||||
*,
|
||||
getter: Callable[[Token, str], Any] = getattr,
|
||||
**cfg,
|
||||
):
|
||||
"""Return PRF scores per feat for a token attribute in UFEATS format.
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
attr (str): The attribute to score.
|
||||
getter (callable): Defaults to getattr. If provided,
|
||||
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
|
||||
getter(token, attr) should return the value of the attribute for an
|
||||
individual token.
|
||||
RETURNS (dict): A dictionary containing the per-feat PRF scores unders
|
||||
|
@ -223,20 +242,26 @@ class Scorer:
|
|||
per_feat[field].score_set(
|
||||
pred_per_feat.get(field, set()), gold_per_feat.get(field, set()),
|
||||
)
|
||||
return {
|
||||
attr + "_per_feat": per_feat,
|
||||
}
|
||||
return {f"{attr}_per_feat": per_feat}
|
||||
|
||||
@staticmethod
|
||||
def score_spans(examples, attr, getter=getattr, **cfg):
|
||||
def score_spans(
|
||||
examples: Iterable[Example],
|
||||
attr: str,
|
||||
*,
|
||||
getter: Callable[[Doc, str], Any] = getattr,
|
||||
**cfg,
|
||||
) -> Dict[str, Any]:
|
||||
"""Returns PRF scores for labeled spans.
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
attr (str): The attribute to score.
|
||||
getter (callable): Defaults to getattr. If provided,
|
||||
getter (Callable[[Doc, str], Any]): Defaults to getattr. If provided,
|
||||
getter(doc, attr) should return the spans for the individual doc.
|
||||
RETURNS (dict): A dictionary containing the PRF scores under the
|
||||
keys attr_p/r/f and the per-type PRF scores under attr_per_type.
|
||||
RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under
|
||||
the keys attr_p/r/f and the per-type PRF scores under attr_per_type.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score_spans
|
||||
"""
|
||||
score = PRFScore()
|
||||
score_per_type = dict()
|
||||
|
@ -256,14 +281,12 @@ class Scorer:
|
|||
# Find all predidate labels, for all and per type
|
||||
gold_spans = set()
|
||||
pred_spans = set()
|
||||
|
||||
# Special case for ents:
|
||||
# If we have missing values in the gold, we can't easily tell
|
||||
# whether our NER predictions are true.
|
||||
# It seems bad but it's what we've always done.
|
||||
if attr == "ents" and not all(token.ent_iob != 0 for token in gold_doc):
|
||||
continue
|
||||
|
||||
for span in getter(gold_doc, attr):
|
||||
gold_span = (span.label_, span.start, span.end - 1)
|
||||
gold_spans.add(gold_span)
|
||||
|
@ -279,38 +302,39 @@ class Scorer:
|
|||
# Score for all labels
|
||||
score.score_set(pred_spans, gold_spans)
|
||||
results = {
|
||||
attr + "_p": score.precision,
|
||||
attr + "_r": score.recall,
|
||||
attr + "_f": score.fscore,
|
||||
attr + "_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
|
||||
f"{attr}_p": score.precision,
|
||||
f"{attr}_r": score.recall,
|
||||
f"{attr}_f": score.fscore,
|
||||
f"{attr}_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
|
||||
}
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def score_cats(
|
||||
examples,
|
||||
attr,
|
||||
getter=getattr,
|
||||
labels=[],
|
||||
multi_label=True,
|
||||
positive_label=None,
|
||||
**cfg
|
||||
):
|
||||
examples: Iterable[Example],
|
||||
attr: str,
|
||||
*,
|
||||
getter: Callable[[Doc, str], Any] = getattr,
|
||||
labels: Iterable[str] = tuple(),
|
||||
multi_label: bool = True,
|
||||
positive_label: Optional[str] = None,
|
||||
**cfg,
|
||||
) -> Dict[str, Any]:
|
||||
"""Returns PRF and ROC AUC scores for a doc-level attribute with a
|
||||
dict with scores for each label like Doc.cats. The reported overall
|
||||
score depends on the scorer settings.
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
attr (str): The attribute to score.
|
||||
getter (callable): Defaults to getattr. If provided,
|
||||
getter (Callable[[Doc, str], Any]): Defaults to getattr. If provided,
|
||||
getter(doc, attr) should return the values for the individual doc.
|
||||
labels (Iterable[str]): The set of possible labels. Defaults to [].
|
||||
multi_label (bool): Whether the attribute allows multiple labels.
|
||||
Defaults to True.
|
||||
positive_label (str): The positive label for a binary task with
|
||||
exclusive classes. Defaults to None.
|
||||
RETURNS (dict): A dictionary containing the scores, with inapplicable
|
||||
scores as None:
|
||||
RETURNS (Dict[str, Any]): A dictionary containing the scores, with
|
||||
inapplicable scores as None:
|
||||
for all:
|
||||
attr_score (one of attr_f / attr_macro_f / attr_macro_auc),
|
||||
attr_score_desc (text description of the overall score),
|
||||
|
@ -319,6 +343,8 @@ class Scorer:
|
|||
for binary exclusive with positive label: attr_p/r/f
|
||||
for 3+ exclusive classes, macro-averaged fscore: attr_macro_f
|
||||
for multilabel, macro-averaged AUC: attr_macro_auc
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score_cats
|
||||
"""
|
||||
score = PRFScore()
|
||||
f_per_type = dict()
|
||||
|
@ -367,64 +393,67 @@ class Scorer:
|
|||
)
|
||||
)
|
||||
results = {
|
||||
attr + "_score": None,
|
||||
attr + "_score_desc": None,
|
||||
attr + "_p": None,
|
||||
attr + "_r": None,
|
||||
attr + "_f": None,
|
||||
attr + "_macro_f": None,
|
||||
attr + "_macro_auc": None,
|
||||
attr + "_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
|
||||
attr + "_auc_per_type": {k: v.score for k, v in auc_per_type.items()},
|
||||
f"{attr}_score": None,
|
||||
f"{attr}_score_desc": None,
|
||||
f"{attr}_p": None,
|
||||
f"{attr}_r": None,
|
||||
f"{attr}_f": None,
|
||||
f"{attr}_macro_f": None,
|
||||
f"{attr}_macro_auc": None,
|
||||
f"{attr}_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
|
||||
f"{attr}_auc_per_type": {k: v.score for k, v in auc_per_type.items()},
|
||||
}
|
||||
if len(labels) == 2 and not multi_label and positive_label:
|
||||
results[attr + "_p"] = score.precision
|
||||
results[attr + "_r"] = score.recall
|
||||
results[attr + "_f"] = score.fscore
|
||||
results[attr + "_score"] = results[attr + "_f"]
|
||||
results[attr + "_score_desc"] = "F (" + positive_label + ")"
|
||||
results[f"{attr}_p"] = score.precision
|
||||
results[f"{attr}_r"] = score.recall
|
||||
results[f"{attr}_f"] = score.fscore
|
||||
results[f"{attr}_score"] = results[f"{attr}_f"]
|
||||
results[f"{attr}_score_desc"] = f"F ({positive_label})"
|
||||
elif not multi_label:
|
||||
results[attr + "_macro_f"] = sum(
|
||||
results[f"{attr}_macro_f"] = sum(
|
||||
[score.fscore for label, score in f_per_type.items()]
|
||||
) / (len(f_per_type) + 1e-100)
|
||||
results[attr + "_score"] = results[attr + "_macro_f"]
|
||||
results[attr + "_score_desc"] = "macro F"
|
||||
results[f"{attr}_score"] = results[f"{attr}_macro_f"]
|
||||
results[f"{attr}_score_desc"] = "macro F"
|
||||
else:
|
||||
results[attr + "_macro_auc"] = max(
|
||||
results[f"{attr}_macro_auc"] = max(
|
||||
sum([score.score for label, score in auc_per_type.items()])
|
||||
/ (len(auc_per_type) + 1e-100),
|
||||
-1,
|
||||
)
|
||||
results[attr + "_score"] = results[attr + "_macro_auc"]
|
||||
results[attr + "_score_desc"] = "macro AUC"
|
||||
results[f"{attr}_score"] = results[f"{attr}_macro_auc"]
|
||||
results[f"{attr}_score_desc"] = "macro AUC"
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def score_deps(
|
||||
examples,
|
||||
attr,
|
||||
getter=getattr,
|
||||
head_attr="head",
|
||||
head_getter=getattr,
|
||||
ignore_labels=tuple(),
|
||||
**cfg
|
||||
):
|
||||
examples: Iterable[Example],
|
||||
attr: str,
|
||||
*,
|
||||
getter: Callable[[Token, str], Any] = getattr,
|
||||
head_attr: str = "head",
|
||||
head_getter: Callable[[Token, str], Any] = getattr,
|
||||
ignore_labels: Tuple[str] = tuple(),
|
||||
**cfg,
|
||||
) -> Dict[str, Any]:
|
||||
"""Returns the UAS, LAS, and LAS per type scores for dependency
|
||||
parses.
|
||||
|
||||
examples (Iterable[Example]): Examples to score
|
||||
attr (str): The attribute containing the dependency label.
|
||||
getter (callable): Defaults to getattr. If provided,
|
||||
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
|
||||
getter(token, attr) should return the value of the attribute for an
|
||||
individual token.
|
||||
head_attr (str): The attribute containing the head token. Defaults to
|
||||
'head'.
|
||||
head_getter (callable): Defaults to getattr. If provided,
|
||||
head_getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
|
||||
head_getter(token, attr) should return the value of the head for an
|
||||
individual token.
|
||||
ignore_labels (Tuple): Labels to ignore while scoring (e.g., punct).
|
||||
RETURNS (dict): A dictionary containing the scores:
|
||||
RETURNS (Dict[str, Any]): A dictionary containing the scores:
|
||||
attr_uas, attr_las, and attr_las_per_type.
|
||||
|
||||
DOCS: https://spacy.io/api/scorer#score_deps
|
||||
"""
|
||||
unlabelled = PRFScore()
|
||||
labelled = PRFScore()
|
||||
|
@ -482,10 +511,11 @@ class Scorer:
|
|||
set(item[:2] for item in pred_deps), set(item[:2] for item in gold_deps)
|
||||
)
|
||||
return {
|
||||
attr + "_uas": unlabelled.fscore,
|
||||
attr + "_las": labelled.fscore,
|
||||
attr
|
||||
+ "_las_per_type": {k: v.to_dict() for k, v in labelled_per_dep.items()},
|
||||
f"{attr}_uas": unlabelled.fscore,
|
||||
f"{attr}_las": labelled.fscore,
|
||||
f"{attr}_las_per_type": {
|
||||
k: v.to_dict() for k, v in labelled_per_dep.items()
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -118,7 +118,7 @@ def test_overfitting_IO():
|
|||
|
||||
# Test scoring
|
||||
scores = nlp.evaluate(
|
||||
train_examples, component_cfg={"scorer": {"positive_label": "POSITIVE"}}
|
||||
train_examples, scorer_cfg={"positive_label": "POSITIVE"}
|
||||
)
|
||||
assert scores["cats_f"] == 1.0
|
||||
assert scores["cats_score"] == 1.0
|
||||
|
|
|
@ -302,6 +302,7 @@ Evaluate a model's pipeline components.
|
|||
| `batch_size` | int | The batch size to use. |
|
||||
| `scorer` | `Scorer` | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. |
|
||||
| `component_cfg` | `Dict[str, dict]` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. |
|
||||
| `scorer_cfg` | `Dict[str, Any]` | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. |
|
||||
| **RETURNS** | `Dict[str, Union[float, dict]]` | A dictionary of evaluation scores. |
|
||||
|
||||
## Language.use_params {#use_params tag="contextmanager, method"}
|
||||
|
|
|
@ -6,10 +6,9 @@ source: spacy/scorer.py
|
|||
---
|
||||
|
||||
The `Scorer` computes evaluation scores. It's typically created by
|
||||
[`Language.evaluate`](/api/language#evaluate).
|
||||
|
||||
In addition, the `Scorer` provides a number of evaluation methods for evaluating
|
||||
`Token` and `Doc` attributes.
|
||||
[`Language.evaluate`](/api/language#evaluate). In addition, the `Scorer`
|
||||
provides a number of evaluation methods for evaluating [`Token`](/api/token) and
|
||||
[`Doc`](/api/doc) attributes.
|
||||
|
||||
## Scorer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
|
@ -20,10 +19,10 @@ Create a new `Scorer`.
|
|||
> ```python
|
||||
> from spacy.scorer import Scorer
|
||||
>
|
||||
> # default scoring pipeline
|
||||
> # Default scoring pipeline
|
||||
> scorer = Scorer()
|
||||
>
|
||||
> # provided scoring pipeline
|
||||
> # Provided scoring pipeline
|
||||
> nlp = spacy.load("en_core_web_sm")
|
||||
> scorer = Scorer(nlp)
|
||||
> ```
|
||||
|
@ -40,16 +39,20 @@ scoring methods provided by the components in the pipeline.
|
|||
The returned `Dict` contains the scores provided by the individual pipeline
|
||||
components. For the scoring methods provided by the `Scorer` and use by the core
|
||||
pipeline components, the individual score names start with the `Token` or `Doc`
|
||||
attribute being scored: `token_acc`, `token_p/r/f`, `sents_p/r/f`, `tag_acc`,
|
||||
`pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc`, `dep_uas`, `dep_las`,
|
||||
`dep_las_per_type`, `ents_p/r/f`, `ents_per_type`, `textcat_macro_auc`,
|
||||
`textcat_macro_f`.
|
||||
attribute being scored:
|
||||
|
||||
- `token_acc`, `token_p`, `token_r`, `token_f`,
|
||||
- `sents_p`, `sents_r`, `sents_f`
|
||||
- `tag_acc`, `pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc`
|
||||
- `dep_uas`, `dep_las`, `dep_las_per_type`
|
||||
- `ents_p`, `ents_r` `ents_f`, `ents_per_type`
|
||||
- `textcat_macro_auc`, `textcat_macro_f`
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scorer = Scorer()
|
||||
> scorer.score(examples)
|
||||
> scores = scorer.score(examples)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
|
@ -57,78 +60,148 @@ attribute being scored: `token_acc`, `token_p/r/f`, `sents_p/r/f`, `tag_acc`,
|
|||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| **RETURNS** | `Dict` | A dictionary of scores. |
|
||||
|
||||
## Scorer.score_tokenization {#score_tokenization tag="staticmethod"}
|
||||
## Scorer.score_tokenization {#score_tokenization tag="staticmethod" new="3"}
|
||||
|
||||
Scores the tokenization:
|
||||
|
||||
- `token_acc`: # correct tokens / # gold tokens
|
||||
- `token_p/r/f`: PRF for token character spans
|
||||
- `token_acc`: number of correct tokens / number of gold tokens
|
||||
- `token_p`, `token_r`, `token_f`: precision, recall and F-score for token
|
||||
character spans
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = Scorer.score_tokenization(examples)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | --------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc/p/r/f`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc`, `token_p`, `token_r`, `token_f`. |
|
||||
|
||||
## Scorer.score_token_attr {#score_token_attr tag="staticmethod"}
|
||||
## Scorer.score_token_attr {#score_token_attr tag="staticmethod" new="3"}
|
||||
|
||||
Scores a single token attribute.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the score `attr_acc`. |
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = Scorer.score_token_attr(examples, "pos")
|
||||
> print(scores["pos_acc"])
|
||||
> ```
|
||||
|
||||
## Scorer.score_token_attr_per_feat {#score_token_attr_per_feat tag="staticmethod"}
|
||||
| Name | Type | Description |
|
||||
| -------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| _keyword-only_ | | |
|
||||
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| **RETURNS** | `Dict[str, float]` | A dictionary containing the score `{attr}_acc`. |
|
||||
|
||||
Scores a single token attribute per feature for a token attribute in UFEATS
|
||||
## Scorer.score_token_attr_per_feat {#score_token_attr_per_feat tag="staticmethod" new="3"}
|
||||
|
||||
Scores a single token attribute per feature for a token attribute in
|
||||
[UFEATS](https://universaldependencies.org/format.html#morphological-annotation)
|
||||
format.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the per-feature PRF scores unders the key `attr_per_feat`. |
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = Scorer.score_token_attr_per_feat(examples, "morph")
|
||||
> print(scores["morph_per_feat"])
|
||||
> ```
|
||||
|
||||
## Scorer.score_spans {#score_spans tag="staticmethod"}
|
||||
| Name | Type | Description |
|
||||
| -------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| _keyword-only_ | | |
|
||||
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the per-feature PRF scores under the key `{attr}_per_feat`. |
|
||||
|
||||
## Scorer.score_spans {#score_spans tag="staticmethod" new="3"}
|
||||
|
||||
Returns PRF scores for labeled or unlabeled spans.
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | ------------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the PRF scores under the keys `attr_p/r/f` and the per-type PRF scores under `attr_per_type`. |
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = Scorer.score_spans(examples, "ents")
|
||||
> print(scores["ents_f"])
|
||||
> ```
|
||||
|
||||
## Scorer.score_deps {#score_deps tag="staticmethod"}
|
||||
| Name | Type | Description |
|
||||
| -------------- | ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| _keyword-only_ | | |
|
||||
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the PRF scores under the keys `{attr}_p`, `{attr}_r`, `{attr}_f` and the per-type PRF scores under `{attr}_per_type`. |
|
||||
|
||||
## Scorer.score_deps {#score_deps tag="staticmethod" new="3"}
|
||||
|
||||
Calculate the UAS, LAS, and LAS per type scores for dependency parses.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> def dep_getter(token, attr):
|
||||
> dep = getattr(token, attr)
|
||||
> dep = token.vocab.strings.as_string(dep).lower()
|
||||
> return dep
|
||||
>
|
||||
> scores = Scorer.score_deps(
|
||||
> examples,
|
||||
> "dep",
|
||||
> getter=dep_getter,
|
||||
> ignore_labels=("p", "punct")
|
||||
> )
|
||||
> print(scores["dep_uas"], scores["dep_las"])
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute containing the dependency label. |
|
||||
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| _keyword-only_ | | |
|
||||
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
|
||||
| `head_attr` | `str` | The attribute containing the head token. |
|
||||
| `head_getter` | `callable` | Defaults to `getattr`. If provided, `head_getter(token, attr)` should return the head for an individual `Token`. |
|
||||
| `ignore_labels` | `Tuple` | Labels to ignore while scoring (e.g., `punct`). |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores: `attr_uas`, `attr_las`, and `attr_las_per_type`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores: `{attr}_uas`, `{attr}_las`, and `{attr}_las_per_type`. |
|
||||
|
||||
## Scorer.score_cats {#score_cats tag="staticmethod"}
|
||||
## Scorer.score_cats {#score_cats tag="staticmethod" new="3"}
|
||||
|
||||
Calculate PRF and ROC AUC scores for a doc-level attribute that is a dict
|
||||
containing scores for each label like `Doc.cats`. The reported overall score
|
||||
depends on the scorer settings.
|
||||
depends on the scorer settings:
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. |
|
||||
| labels | `Iterable[str]` | The set of possible labels. Defaults to `[]`. |
|
||||
| `multi_label` | `bool` | Whether the attribute allows multiple labels. Defaults to `True`. |
|
||||
| `positive_label` | `str` | The positive label for a binary task with exclusive classes. Defaults to `None`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores, with inapplicable scores as `None`: 1) for all: `attr_score` (one of `attr_f` / `attr_macro_f` / `attr_macro_auc`), `attr_score_desc` (text description of the overall score), `attr_f_per_type`, `attr_auc_per_type`; 2) for binary exclusive with positive label: `attr_p/r/f`; 3) for 3+ exclusive classes, macro-averaged fscore: `attr_macro_f`; 4) for multilabel, macro-averaged AUC: `attr_macro_auc` |
|
||||
1. **all:** `{attr}_score` (one of `{attr}_f` / `{attr}_macro_f` /
|
||||
`{attr}_macro_auc`), `{attr}_score_desc` (text description of the overall
|
||||
score), `{attr}_f_per_type`, `{attr}_auc_per_type`
|
||||
2. **binary exclusive with positive label:** `{attr}_p`, `{attr}_r`, `{attr}_f`
|
||||
3. **3+ exclusive classes**, macro-averaged F-score: `{attr}_macro_f`;
|
||||
4. **multilabel**, macro-averaged AUC: `{attr}_macro_auc`
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> labels = ["LABEL_A", "LABEL_B", "LABEL_C"]
|
||||
> scores = Scorer.score_cats(
|
||||
> examples,
|
||||
> "cats",
|
||||
> labels=labels
|
||||
> )
|
||||
> print(scores["cats_macro_auc"])
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ---------------- | ------------------- | ------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
|
||||
| `attr` | `str` | The attribute to score. |
|
||||
| _keyword-only_ | | |
|
||||
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. |
|
||||
| labels | `Iterable[str]` | The set of possible labels. Defaults to `[]`. |
|
||||
| `multi_label` | `bool` | Whether the attribute allows multiple labels. Defaults to `True`. |
|
||||
| `positive_label` | `str` | The positive label for a binary task with exclusive classes. Defaults to `None`. |
|
||||
| **RETURNS** | `Dict` | A dictionary containing the scores, with inapplicable scores as `None`. |
|
||||
|
|
Loading…
Reference in New Issue
Block a user