Merge pull request #5833 from explosion/feature/scorer-adjustments

This commit is contained in:
Ines Montani 2020-07-31 14:00:39 +02:00 committed by GitHub
commit 6365837ca9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 264 additions and 154 deletions

View File

@ -1099,6 +1099,7 @@ class Language:
batch_size: int = 256,
scorer: Optional[Scorer] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
scorer_cfg: Optional[Dict[str, Any]] = None,
) -> Dict[str, Union[float, dict]]:
"""Evaluate a model's pipeline components.
@ -1109,6 +1110,8 @@ class Language:
will be created.
component_cfg (dict): An optional dictionary with extra keyword
arguments for specific components.
scorer_cfg (dict): An optional dictionary with extra keyword arguments
for the scorer.
RETURNS (Scorer): The scorer containing the evaluation results.
DOCS: https://spacy.io/api/language#evaluate
@ -1126,8 +1129,10 @@ class Language:
raise TypeError(err)
if component_cfg is None:
component_cfg = {}
if scorer_cfg is None:
scorer_cfg = {}
if scorer is None:
kwargs = component_cfg.get("scorer", {})
kwargs = dict(scorer_cfg)
kwargs.setdefault("verbose", verbose)
kwargs.setdefault("nlp", self)
scorer = Scorer(**kwargs)

View File

@ -34,7 +34,7 @@ DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"parser",
assigns=["token.dep", "token.is_sent_start", "doc.sents"],
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
@ -120,7 +120,8 @@ cdef class DependencyParser(Parser):
return dep
results = {}
results.update(Scorer.score_spans(examples, "sents", **kwargs))
results.update(Scorer.score_deps(examples, "dep", getter=dep_getter,
ignore_labels=("p", "punct"), **kwargs))
kwargs.setdefault("getter", dep_getter)
kwargs.setdefault("ignore_label", ("p", "punct"))
results.update(Scorer.score_deps(examples, "dep", **kwargs))
del results["sents_per_type"]
return results

View File

@ -1,55 +1,61 @@
from typing import Optional, Iterable, Dict, Any, Callable, Tuple, TYPE_CHECKING
import numpy as np
from .gold import Example
from .tokens import Token, Doc
from .errors import Errors
from .util import get_lang_class
from .morphology import Morphology
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from .language import Language # noqa: F401
DEFAULT_PIPELINE = ["senter", "tagger", "morphologizer", "parser", "ner", "textcat"]
class PRFScore:
"""
A precision / recall / F score
"""
"""A precision / recall / F score."""
def __init__(self):
def __init__(self) -> None:
self.tp = 0
self.fp = 0
self.fn = 0
def score_set(self, cand, gold):
def score_set(self, cand: set, gold: set) -> None:
self.tp += len(cand.intersection(gold))
self.fp += len(cand - gold)
self.fn += len(gold - cand)
@property
def precision(self):
def precision(self) -> float:
return self.tp / (self.tp + self.fp + 1e-100)
@property
def recall(self):
def recall(self) -> float:
return self.tp / (self.tp + self.fn + 1e-100)
@property
def fscore(self):
def fscore(self) -> float:
p = self.precision
r = self.recall
return 2 * ((p * r) / (p + r + 1e-100))
def to_dict(self):
def to_dict(self) -> Dict[str, float]:
return {"p": self.precision, "r": self.recall, "f": self.fscore}
class ROCAUCScore:
"""
An AUC ROC score.
"""
"""An AUC ROC score."""
def __init__(self):
def __init__(self) -> None:
self.golds = []
self.cands = []
self.saved_score = 0.0
self.saved_score_at_len = 0
def score_set(self, cand, gold):
def score_set(self, cand, gold) -> None:
self.cands.append(cand)
self.golds.append(gold)
@ -70,51 +76,52 @@ class ROCAUCScore:
class Scorer:
"""Compute evaluation scores."""
def __init__(self, nlp=None, **cfg):
def __init__(
self,
nlp: Optional["Language"] = None,
default_lang: str = "xx",
default_pipeline=DEFAULT_PIPELINE,
**cfg,
) -> None:
"""Initialize the Scorer.
DOCS: https://spacy.io/api/scorer#init
"""
self.nlp = nlp
self.cfg = cfg
if not nlp:
# create a default pipeline
nlp = get_lang_class("xx")()
nlp.add_pipe("senter")
nlp.add_pipe("tagger")
nlp.add_pipe("morphologizer")
nlp.add_pipe("parser")
nlp.add_pipe("ner")
nlp.add_pipe("textcat")
nlp = get_lang_class(default_lang)()
for pipe in default_pipeline:
nlp.add_pipe(pipe)
self.nlp = nlp
def score(self, examples):
def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
"""Evaluate a list of Examples.
examples (Iterable[Example]): The predicted annotations + correct annotations.
RETURNS (Dict): A dictionary of scores.
DOCS: https://spacy.io/api/scorer#score
"""
scores = {}
if hasattr(self.nlp.tokenizer, "score"):
scores.update(self.nlp.tokenizer.score(examples, **self.cfg))
for name, component in self.nlp.pipeline:
if hasattr(component, "score"):
scores.update(component.score(examples, **self.cfg))
return scores
@staticmethod
def score_tokenization(examples, **cfg):
def score_tokenization(examples: Iterable[Example], **cfg) -> Dict[str, float]:
"""Returns accuracy and PRF scores for tokenization.
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for token character spans
examples (Iterable[Example]): Examples to score
RETURNS (dict): A dictionary containing the scores token_acc/p/r/f.
RETURNS (Dict[str, float]): A dictionary containing the scores
token_acc/p/r/f.
DOCS: https://spacy.io/api/scorer#score_tokenization
"""
acc_score = PRFScore()
prf_score = PRFScore()
@ -145,16 +152,24 @@ class Scorer:
}
@staticmethod
def score_token_attr(examples, attr, getter=getattr, **cfg):
def score_token_attr(
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
**cfg,
) -> Dict[str, float]:
"""Returns an accuracy score for a token-level attribute.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
getter (callable): Defaults to getattr. If provided,
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
getter(token, attr) should return the value of the attribute for an
individual token.
RETURNS (dict): A dictionary containing the accuracy score under the
key attr_acc.
RETURNS (Dict[str, float]): A dictionary containing the accuracy score
under the key attr_acc.
DOCS: https://spacy.io/api/scorer#score_token_attr
"""
tag_score = PRFScore()
for example in examples:
@ -172,17 +187,21 @@ class Scorer:
gold_i = align.x2y[token.i].dataXd[0, 0]
pred_tags.add((gold_i, getter(token, attr)))
tag_score.score_set(pred_tags, gold_tags)
return {
attr + "_acc": tag_score.fscore,
}
return {f"{attr}_acc": tag_score.fscore}
@staticmethod
def score_token_attr_per_feat(examples, attr, getter=getattr, **cfg):
def score_token_attr_per_feat(
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
**cfg,
):
"""Return PRF scores per feat for a token attribute in UFEATS format.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
getter (callable): Defaults to getattr. If provided,
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
getter(token, attr) should return the value of the attribute for an
individual token.
RETURNS (dict): A dictionary containing the per-feat PRF scores unders
@ -223,20 +242,26 @@ class Scorer:
per_feat[field].score_set(
pred_per_feat.get(field, set()), gold_per_feat.get(field, set()),
)
return {
attr + "_per_feat": per_feat,
}
return {f"{attr}_per_feat": per_feat}
@staticmethod
def score_spans(examples, attr, getter=getattr, **cfg):
def score_spans(
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Doc, str], Any] = getattr,
**cfg,
) -> Dict[str, Any]:
"""Returns PRF scores for labeled spans.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
getter (callable): Defaults to getattr. If provided,
getter (Callable[[Doc, str], Any]): Defaults to getattr. If provided,
getter(doc, attr) should return the spans for the individual doc.
RETURNS (dict): A dictionary containing the PRF scores under the
keys attr_p/r/f and the per-type PRF scores under attr_per_type.
RETURNS (Dict[str, Any]): A dictionary containing the PRF scores under
the keys attr_p/r/f and the per-type PRF scores under attr_per_type.
DOCS: https://spacy.io/api/scorer#score_spans
"""
score = PRFScore()
score_per_type = dict()
@ -256,14 +281,12 @@ class Scorer:
# Find all predidate labels, for all and per type
gold_spans = set()
pred_spans = set()
# Special case for ents:
# If we have missing values in the gold, we can't easily tell
# whether our NER predictions are true.
# It seems bad but it's what we've always done.
if attr == "ents" and not all(token.ent_iob != 0 for token in gold_doc):
continue
for span in getter(gold_doc, attr):
gold_span = (span.label_, span.start, span.end - 1)
gold_spans.add(gold_span)
@ -279,38 +302,39 @@ class Scorer:
# Score for all labels
score.score_set(pred_spans, gold_spans)
results = {
attr + "_p": score.precision,
attr + "_r": score.recall,
attr + "_f": score.fscore,
attr + "_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
f"{attr}_p": score.precision,
f"{attr}_r": score.recall,
f"{attr}_f": score.fscore,
f"{attr}_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
}
return results
@staticmethod
def score_cats(
examples,
attr,
getter=getattr,
labels=[],
multi_label=True,
positive_label=None,
**cfg
):
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Doc, str], Any] = getattr,
labels: Iterable[str] = tuple(),
multi_label: bool = True,
positive_label: Optional[str] = None,
**cfg,
) -> Dict[str, Any]:
"""Returns PRF and ROC AUC scores for a doc-level attribute with a
dict with scores for each label like Doc.cats. The reported overall
score depends on the scorer settings.
examples (Iterable[Example]): Examples to score
attr (str): The attribute to score.
getter (callable): Defaults to getattr. If provided,
getter (Callable[[Doc, str], Any]): Defaults to getattr. If provided,
getter(doc, attr) should return the values for the individual doc.
labels (Iterable[str]): The set of possible labels. Defaults to [].
multi_label (bool): Whether the attribute allows multiple labels.
Defaults to True.
positive_label (str): The positive label for a binary task with
exclusive classes. Defaults to None.
RETURNS (dict): A dictionary containing the scores, with inapplicable
scores as None:
RETURNS (Dict[str, Any]): A dictionary containing the scores, with
inapplicable scores as None:
for all:
attr_score (one of attr_f / attr_macro_f / attr_macro_auc),
attr_score_desc (text description of the overall score),
@ -319,6 +343,8 @@ class Scorer:
for binary exclusive with positive label: attr_p/r/f
for 3+ exclusive classes, macro-averaged fscore: attr_macro_f
for multilabel, macro-averaged AUC: attr_macro_auc
DOCS: https://spacy.io/api/scorer#score_cats
"""
score = PRFScore()
f_per_type = dict()
@ -367,64 +393,67 @@ class Scorer:
)
)
results = {
attr + "_score": None,
attr + "_score_desc": None,
attr + "_p": None,
attr + "_r": None,
attr + "_f": None,
attr + "_macro_f": None,
attr + "_macro_auc": None,
attr + "_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
attr + "_auc_per_type": {k: v.score for k, v in auc_per_type.items()},
f"{attr}_score": None,
f"{attr}_score_desc": None,
f"{attr}_p": None,
f"{attr}_r": None,
f"{attr}_f": None,
f"{attr}_macro_f": None,
f"{attr}_macro_auc": None,
f"{attr}_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
f"{attr}_auc_per_type": {k: v.score for k, v in auc_per_type.items()},
}
if len(labels) == 2 and not multi_label and positive_label:
results[attr + "_p"] = score.precision
results[attr + "_r"] = score.recall
results[attr + "_f"] = score.fscore
results[attr + "_score"] = results[attr + "_f"]
results[attr + "_score_desc"] = "F (" + positive_label + ")"
results[f"{attr}_p"] = score.precision
results[f"{attr}_r"] = score.recall
results[f"{attr}_f"] = score.fscore
results[f"{attr}_score"] = results[f"{attr}_f"]
results[f"{attr}_score_desc"] = f"F ({positive_label})"
elif not multi_label:
results[attr + "_macro_f"] = sum(
results[f"{attr}_macro_f"] = sum(
[score.fscore for label, score in f_per_type.items()]
) / (len(f_per_type) + 1e-100)
results[attr + "_score"] = results[attr + "_macro_f"]
results[attr + "_score_desc"] = "macro F"
results[f"{attr}_score"] = results[f"{attr}_macro_f"]
results[f"{attr}_score_desc"] = "macro F"
else:
results[attr + "_macro_auc"] = max(
results[f"{attr}_macro_auc"] = max(
sum([score.score for label, score in auc_per_type.items()])
/ (len(auc_per_type) + 1e-100),
-1,
)
results[attr + "_score"] = results[attr + "_macro_auc"]
results[attr + "_score_desc"] = "macro AUC"
results[f"{attr}_score"] = results[f"{attr}_macro_auc"]
results[f"{attr}_score_desc"] = "macro AUC"
return results
@staticmethod
def score_deps(
examples,
attr,
getter=getattr,
head_attr="head",
head_getter=getattr,
ignore_labels=tuple(),
**cfg
):
examples: Iterable[Example],
attr: str,
*,
getter: Callable[[Token, str], Any] = getattr,
head_attr: str = "head",
head_getter: Callable[[Token, str], Any] = getattr,
ignore_labels: Tuple[str] = tuple(),
**cfg,
) -> Dict[str, Any]:
"""Returns the UAS, LAS, and LAS per type scores for dependency
parses.
examples (Iterable[Example]): Examples to score
attr (str): The attribute containing the dependency label.
getter (callable): Defaults to getattr. If provided,
getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
getter(token, attr) should return the value of the attribute for an
individual token.
head_attr (str): The attribute containing the head token. Defaults to
'head'.
head_getter (callable): Defaults to getattr. If provided,
head_getter (Callable[[Token, str], Any]): Defaults to getattr. If provided,
head_getter(token, attr) should return the value of the head for an
individual token.
ignore_labels (Tuple): Labels to ignore while scoring (e.g., punct).
RETURNS (dict): A dictionary containing the scores:
RETURNS (Dict[str, Any]): A dictionary containing the scores:
attr_uas, attr_las, and attr_las_per_type.
DOCS: https://spacy.io/api/scorer#score_deps
"""
unlabelled = PRFScore()
labelled = PRFScore()
@ -482,10 +511,11 @@ class Scorer:
set(item[:2] for item in pred_deps), set(item[:2] for item in gold_deps)
)
return {
attr + "_uas": unlabelled.fscore,
attr + "_las": labelled.fscore,
attr
+ "_las_per_type": {k: v.to_dict() for k, v in labelled_per_dep.items()},
f"{attr}_uas": unlabelled.fscore,
f"{attr}_las": labelled.fscore,
f"{attr}_las_per_type": {
k: v.to_dict() for k, v in labelled_per_dep.items()
},
}

View File

@ -118,7 +118,7 @@ def test_overfitting_IO():
# Test scoring
scores = nlp.evaluate(
train_examples, component_cfg={"scorer": {"positive_label": "POSITIVE"}}
train_examples, scorer_cfg={"positive_label": "POSITIVE"}
)
assert scores["cats_f"] == 1.0
assert scores["cats_score"] == 1.0

View File

@ -302,6 +302,7 @@ Evaluate a model's pipeline components.
| `batch_size` | int | The batch size to use. |
| `scorer` | `Scorer` | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. |
| `component_cfg` | `Dict[str, dict]` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. |
| `scorer_cfg` | `Dict[str, Any]` | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. |
| **RETURNS** | `Dict[str, Union[float, dict]]` | A dictionary of evaluation scores. |
## Language.use_params {#use_params tag="contextmanager, method"}

View File

@ -6,10 +6,9 @@ source: spacy/scorer.py
---
The `Scorer` computes evaluation scores. It's typically created by
[`Language.evaluate`](/api/language#evaluate).
In addition, the `Scorer` provides a number of evaluation methods for evaluating
`Token` and `Doc` attributes.
[`Language.evaluate`](/api/language#evaluate). In addition, the `Scorer`
provides a number of evaluation methods for evaluating [`Token`](/api/token) and
[`Doc`](/api/doc) attributes.
## Scorer.\_\_init\_\_ {#init tag="method"}
@ -20,10 +19,10 @@ Create a new `Scorer`.
> ```python
> from spacy.scorer import Scorer
>
> # default scoring pipeline
> # Default scoring pipeline
> scorer = Scorer()
>
> # provided scoring pipeline
> # Provided scoring pipeline
> nlp = spacy.load("en_core_web_sm")
> scorer = Scorer(nlp)
> ```
@ -40,16 +39,20 @@ scoring methods provided by the components in the pipeline.
The returned `Dict` contains the scores provided by the individual pipeline
components. For the scoring methods provided by the `Scorer` and use by the core
pipeline components, the individual score names start with the `Token` or `Doc`
attribute being scored: `token_acc`, `token_p/r/f`, `sents_p/r/f`, `tag_acc`,
`pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc`, `dep_uas`, `dep_las`,
`dep_las_per_type`, `ents_p/r/f`, `ents_per_type`, `textcat_macro_auc`,
`textcat_macro_f`.
attribute being scored:
- `token_acc`, `token_p`, `token_r`, `token_f`,
- `sents_p`, `sents_r`, `sents_f`
- `tag_acc`, `pos_acc`, `morph_acc`, `morph_per_feat`, `lemma_acc`
- `dep_uas`, `dep_las`, `dep_las_per_type`
- `ents_p`, `ents_r` `ents_f`, `ents_per_type`
- `textcat_macro_auc`, `textcat_macro_f`
> #### Example
>
> ```python
> scorer = Scorer()
> scorer.score(examples)
> scores = scorer.score(examples)
> ```
| Name | Type | Description |
@ -57,78 +60,148 @@ attribute being scored: `token_acc`, `token_p/r/f`, `sents_p/r/f`, `tag_acc`,
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| **RETURNS** | `Dict` | A dictionary of scores. |
## Scorer.score_tokenization {#score_tokenization tag="staticmethod"}
## Scorer.score_tokenization {#score_tokenization tag="staticmethod" new="3"}
Scores the tokenization:
- `token_acc`: # correct tokens / # gold tokens
- `token_p/r/f`: PRF for token character spans
- `token_acc`: number of correct tokens / number of gold tokens
- `token_p`, `token_r`, `token_f`: precision, recall and F-score for token
character spans
> #### Example
>
> ```python
> scores = Scorer.score_tokenization(examples)
> ```
| Name | Type | Description |
| ----------- | ------------------- | --------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc/p/r/f`. |
| **RETURNS** | `Dict` | A dictionary containing the scores `token_acc`, `token_p`, `token_r`, `token_f`. |
## Scorer.score_token_attr {#score_token_attr tag="staticmethod"}
## Scorer.score_token_attr {#score_token_attr tag="staticmethod" new="3"}
Scores a single token attribute.
| Name | Type | Description |
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| **RETURNS** | `Dict` | A dictionary containing the score `attr_acc`. |
> #### Example
>
> ```python
> scores = Scorer.score_token_attr(examples, "pos")
> print(scores["pos_acc"])
> ```
## Scorer.score_token_attr_per_feat {#score_token_attr_per_feat tag="staticmethod"}
| Name | Type | Description |
| -------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| _keyword-only_ | | |
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| **RETURNS** | `Dict[str, float]` | A dictionary containing the score `{attr}_acc`. |
Scores a single token attribute per feature for a token attribute in UFEATS
## Scorer.score_token_attr_per_feat {#score_token_attr_per_feat tag="staticmethod" new="3"}
Scores a single token attribute per feature for a token attribute in
[UFEATS](https://universaldependencies.org/format.html#morphological-annotation)
format.
| Name | Type | Description |
| ----------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| **RETURNS** | `Dict` | A dictionary containing the per-feature PRF scores unders the key `attr_per_feat`. |
> #### Example
>
> ```python
> scores = Scorer.score_token_attr_per_feat(examples, "morph")
> print(scores["morph_per_feat"])
> ```
## Scorer.score_spans {#score_spans tag="staticmethod"}
| Name | Type | Description |
| -------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| _keyword-only_ | | |
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| **RETURNS** | `Dict` | A dictionary containing the per-feature PRF scores under the key `{attr}_per_feat`. |
## Scorer.score_spans {#score_spans tag="staticmethod" new="3"}
Returns PRF scores for labeled or unlabeled spans.
| Name | Type | Description |
| ----------- | ------------------- | --------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. |
| **RETURNS** | `Dict` | A dictionary containing the PRF scores under the keys `attr_p/r/f` and the per-type PRF scores under `attr_per_type`. |
> #### Example
>
> ```python
> scores = Scorer.score_spans(examples, "ents")
> print(scores["ents_f"])
> ```
## Scorer.score_deps {#score_deps tag="staticmethod"}
| Name | Type | Description |
| -------------- | ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| _keyword-only_ | | |
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the `Span` objects for an individual `Doc`. |
| **RETURNS** | `Dict` | A dictionary containing the PRF scores under the keys `{attr}_p`, `{attr}_r`, `{attr}_f` and the per-type PRF scores under `{attr}_per_type`. |
## Scorer.score_deps {#score_deps tag="staticmethod" new="3"}
Calculate the UAS, LAS, and LAS per type scores for dependency parses.
> #### Example
>
> ```python
> def dep_getter(token, attr):
> dep = getattr(token, attr)
> dep = token.vocab.strings.as_string(dep).lower()
> return dep
>
> scores = Scorer.score_deps(
> examples,
> "dep",
> getter=dep_getter,
> ignore_labels=("p", "punct")
> )
> print(scores["dep_uas"], scores["dep_las"])
> ```
| Name | Type | Description |
| --------------- | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute containing the dependency label. |
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| _keyword-only_ | | |
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(token, attr)` should return the value of the attribute for an individual `Token`. |
| `head_attr` | `str` | The attribute containing the head token. |
| `head_getter` | `callable` | Defaults to `getattr`. If provided, `head_getter(token, attr)` should return the head for an individual `Token`. |
| `ignore_labels` | `Tuple` | Labels to ignore while scoring (e.g., `punct`). |
| **RETURNS** | `Dict` | A dictionary containing the scores: `attr_uas`, `attr_las`, and `attr_las_per_type`. |
| **RETURNS** | `Dict` | A dictionary containing the scores: `{attr}_uas`, `{attr}_las`, and `{attr}_las_per_type`. |
## Scorer.score_cats {#score_cats tag="staticmethod"}
## Scorer.score_cats {#score_cats tag="staticmethod" new="3"}
Calculate PRF and ROC AUC scores for a doc-level attribute that is a dict
containing scores for each label like `Doc.cats`. The reported overall score
depends on the scorer settings.
depends on the scorer settings:
| Name | Type | Description |
| ---------------- | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| `getter` | `callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. |
| labels | `Iterable[str]` | The set of possible labels. Defaults to `[]`. |
| `multi_label` | `bool` | Whether the attribute allows multiple labels. Defaults to `True`. |
| `positive_label` | `str` | The positive label for a binary task with exclusive classes. Defaults to `None`. |
| **RETURNS** | `Dict` | A dictionary containing the scores, with inapplicable scores as `None`: 1) for all: `attr_score` (one of `attr_f` / `attr_macro_f` / `attr_macro_auc`), `attr_score_desc` (text description of the overall score), `attr_f_per_type`, `attr_auc_per_type`; 2) for binary exclusive with positive label: `attr_p/r/f`; 3) for 3+ exclusive classes, macro-averaged fscore: `attr_macro_f`; 4) for multilabel, macro-averaged AUC: `attr_macro_auc` |
1. **all:** `{attr}_score` (one of `{attr}_f` / `{attr}_macro_f` /
`{attr}_macro_auc`), `{attr}_score_desc` (text description of the overall
score), `{attr}_f_per_type`, `{attr}_auc_per_type`
2. **binary exclusive with positive label:** `{attr}_p`, `{attr}_r`, `{attr}_f`
3. **3+ exclusive classes**, macro-averaged F-score: `{attr}_macro_f`;
4. **multilabel**, macro-averaged AUC: `{attr}_macro_auc`
> #### Example
>
> ```python
> labels = ["LABEL_A", "LABEL_B", "LABEL_C"]
> scores = Scorer.score_cats(
> examples,
> "cats",
> labels=labels
> )
> print(scores["cats_macro_auc"])
> ```
| Name | Type | Description |
| ---------------- | ------------------- | ------------------------------------------------------------------------------------------------------- |
| `examples` | `Iterable[Example]` | The `Example` objects holding both the predictions and the correct gold-standard annotations. |
| `attr` | `str` | The attribute to score. |
| _keyword-only_ | | |
| `getter` | `Callable` | Defaults to `getattr`. If provided, `getter(doc, attr)` should return the cats for an individual `Doc`. |
| labels | `Iterable[str]` | The set of possible labels. Defaults to `[]`. |
| `multi_label` | `bool` | Whether the attribute allows multiple labels. Defaults to `True`. |
| `positive_label` | `str` | The positive label for a binary task with exclusive classes. Defaults to `None`. |
| **RETURNS** | `Dict` | A dictionary containing the scores, with inapplicable scores as `None`. |