mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Add multiple packages to universe.json (#3809) [ci skip]
* Add multiple packages to universe.json Added following packages: NLPArchitect, NLPRe, Chatterbot, alibi, NeuroNER * Auto-format * Update slogan (probably just copy-paste mistake) * Adjust formatting * Update tags / categories
This commit is contained in:
		
							parent
							
								
									86eb817b74
								
							
						
					
					
						commit
						638caba9b5
					
				| 
						 | 
				
			
			@ -1,22 +1,106 @@
 | 
			
		|||
{
 | 
			
		||||
    "resources": [
 | 
			
		||||
        {
 | 
			
		||||
            "id": "nlp-architect",
 | 
			
		||||
            "title": "NLP Architect",
 | 
			
		||||
            "slogan": "Python lib for exploring Deep NLP & NLU by Intel AI",
 | 
			
		||||
            "github": "NervanaSystems/nlp-architect",
 | 
			
		||||
            "pip": "nlp-architect",
 | 
			
		||||
            "thumb": "https://raw.githubusercontent.com/NervanaSystems/nlp-architect/master/assets/nlp_architect_logo.png",
 | 
			
		||||
            "code_example": [],
 | 
			
		||||
            "category": ["standalone", "research"],
 | 
			
		||||
            "tags": ["pytorch"]
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "NeuroNER",
 | 
			
		||||
            "title": "NeuroNER",
 | 
			
		||||
            "slogan": "Named-entity recognition using neural networks",
 | 
			
		||||
            "github": "Franck-Dernoncourt/NeuroNER",
 | 
			
		||||
            "pip": "pyneuroner[cpu]",
 | 
			
		||||
            "thumb": "",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                "from neuroner import neuromodel",
 | 
			
		||||
                "nn = neuromodel.NeuroNER(train_model=False, use_pretrained_model=True)"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["ner"],
 | 
			
		||||
            "tags": ["standalone"]
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "NLPre",
 | 
			
		||||
            "title": "NLPre",
 | 
			
		||||
            "slogan": "Natural Language Preprocessing Library in Health data",
 | 
			
		||||
            "github": "NIHOPA/NLPre",
 | 
			
		||||
            "pip": "nlpre",
 | 
			
		||||
            "thumb": "",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                "from nlpre import titlecaps, dedash, identify_parenthetical_phrases",
 | 
			
		||||
                "from nlpre import replace_acronyms, replace_from_dictionary",
 | 
			
		||||
                "ABBR = identify_parenthetical_phrases()(text)",
 | 
			
		||||
                "parsers = [dedash(), titlecaps(), replace_acronyms(ABBR),",
 | 
			
		||||
                "        replace_from_dictionary(prefix='MeSH_')]",
 | 
			
		||||
                "for f in parsers:",
 | 
			
		||||
                "    text = f(text)",
 | 
			
		||||
                "print(text)"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["standalone"],
 | 
			
		||||
            "tags": []
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "Chatterbot",
 | 
			
		||||
            "title": "Chatterbot",
 | 
			
		||||
            "slogan": "A machine-learning based conversational dialog engine for creating chat bots",
 | 
			
		||||
            "github": "gunthercox/ChatterBot",
 | 
			
		||||
            "pip": "chatterbot",
 | 
			
		||||
            "thumb": "https://chatterbot.readthedocs.io/en/stable/_images/banner.png",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                "from chatterbot import ChatBot",
 | 
			
		||||
                "from chatterbot.trainers import ListTrainer",
 | 
			
		||||
                "# Create a new chat bot named Charlie",
 | 
			
		||||
                "chatbot = ChatBot('Charlie')",
 | 
			
		||||
                "trainer = ListTrainer(chatbot)",
 | 
			
		||||
                "trainer.train([",
 | 
			
		||||
                "'Hi, can I help you?',",
 | 
			
		||||
                "'Sure, I would like to book a flight to Iceland.",
 | 
			
		||||
                "'Your flight has been booked.'",
 | 
			
		||||
                "])",
 | 
			
		||||
                "",
 | 
			
		||||
                "response = chatbot.get_response('I would like to book a flight.')"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["conversational", "standalone"],
 | 
			
		||||
            "tags": ["chatbots"]
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "saber",
 | 
			
		||||
            "title": "saber",
 | 
			
		||||
            "slogan": "deep-learning based tool for information extraction in the biomedical domain",
 | 
			
		||||
            "slogan": "Deep-learning based tool for information extraction in the biomedical domain",
 | 
			
		||||
            "github": "BaderLab/saber",
 | 
			
		||||
            "pip": "saber",
 | 
			
		||||
            "thumb": "https://raw.githubusercontent.com/BaderLab/saber/master/docs/img/saber_logo.png",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                ">>> from saber.saber import Saber",
 | 
			
		||||
                ">>> saber = Saber()",
 | 
			
		||||
                ">>> saber.load('PRGE')",
 | 
			
		||||
                "from saber.saber import Saber",
 | 
			
		||||
                "saber = Saber()",
 | 
			
		||||
                "saber.load('PRGE')",
 | 
			
		||||
                "saber.annotate('The phosphorylation of Hdm2 by MK2 promotes the ubiquitination of p53.')"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["research", "biomedical"],
 | 
			
		||||
            "tags": ["keras"]
 | 
			
		||||
            "category": ["research"],
 | 
			
		||||
            "tags": ["keras", "biomedical"]
 | 
			
		||||
        },
 | 
			
		||||
        {
 | 
			
		||||
            "id": "alibi",
 | 
			
		||||
            "title": "alibi",
 | 
			
		||||
            "slogan": "Algorithms for monitoring and explaining machine learning models ",
 | 
			
		||||
            "github": "SeldonIO/alibi",
 | 
			
		||||
            "pip": "alibi",
 | 
			
		||||
            "thumb": "https://docs.seldon.io/projects/alibi/en/v0.2.0/_static/Alibi_Logo.png",
 | 
			
		||||
            "code_example": [
 | 
			
		||||
                ">>> from alibi.explainers import AnchorTabular",
 | 
			
		||||
                ">>> explainer = AnchorTabular(predict_fn, feature_names)",
 | 
			
		||||
                ">>> explainer.fit(X_train)",
 | 
			
		||||
                ">>> explainer.explain(x)"
 | 
			
		||||
            ],
 | 
			
		||||
            "category": ["standalone", "research"],
 | 
			
		||||
            "tags": []
 | 
			
		||||
        },
 | 
			
		||||
 | 
			
		||||
        {
 | 
			
		||||
            "id": "spacymoji",
 | 
			
		||||
            "slogan": "Emoji handling and meta data as a spaCy pipeline component",
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user