mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Simplify config use in Language.initialize
This commit is contained in:
parent
56f8bc73ef
commit
63d1598137
|
@ -18,6 +18,7 @@ from .tokens.underscore import Underscore
|
|||
from .vocab import Vocab, create_vocab
|
||||
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||
from .training import Example, validate_examples
|
||||
from .training.initialize import init_vocab, init_tok2vec
|
||||
from .scorer import Scorer
|
||||
from .util import registry, SimpleFrozenList
|
||||
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
|
||||
|
@ -27,7 +28,8 @@ from .lang.punctuation import TOKENIZER_INFIXES
|
|||
from .tokens import Doc
|
||||
from .tokenizer import Tokenizer
|
||||
from .errors import Errors, Warnings
|
||||
from .schemas import ConfigSchema, ConfigSchemaNlp, validate_init_settings
|
||||
from .schemas import ConfigSchema, ConfigSchemaNlp, ConfigSchemaInit
|
||||
from .schemas import ConfigSchemaPretrain, validate_init_settings
|
||||
from .git_info import GIT_VERSION
|
||||
from . import util
|
||||
from . import about
|
||||
|
@ -1161,7 +1163,6 @@ class Language:
|
|||
self,
|
||||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||
*,
|
||||
settings: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||||
sgd: Optional[Optimizer] = None,
|
||||
) -> Optimizer:
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
@ -1198,28 +1199,38 @@ class Language:
|
|||
if not valid_examples:
|
||||
err = Errors.E930.format(name="Language", obj="empty list")
|
||||
raise ValueError(err)
|
||||
# Make sure the config is interpolated so we can resolve subsections
|
||||
config = self.config.interpolate()
|
||||
# These are the settings provided in the [initialize] block in the config
|
||||
I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
|
||||
V = I["vocab"]
|
||||
init_vocab(
|
||||
self, data=V["data"], lookups=V["lookups"], vectors=V["vectors"],
|
||||
)
|
||||
pretrain_cfg = config.get("pretraining")
|
||||
if pretrain_cfg:
|
||||
P = registry.resolve(pretrain_cfg, schema=ConfigSchemaPretrain)
|
||||
init_tok2vec(self, P, V)
|
||||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
ops = get_current_ops()
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
self._optimizer = sgd
|
||||
if hasattr(self.tokenizer, "initialize"):
|
||||
tok_settings = settings.get("tokenizer", {})
|
||||
tok_settings = validate_init_settings(
|
||||
self.tokenizer.initialize,
|
||||
tok_settings,
|
||||
I["tokenizer"],
|
||||
section="tokenizer",
|
||||
name="tokenizer",
|
||||
)
|
||||
self.tokenizer.initialize(get_examples, nlp=self, **tok_settings)
|
||||
proc_settings = settings.get("components", {})
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "initialize"):
|
||||
p_settings = proc_settings.get(name, {})
|
||||
p_settings = I["components"].get(name, {})
|
||||
p_settings = validate_init_settings(
|
||||
proc.initialize, p_settings, section="components", name=name
|
||||
)
|
||||
proc.initialize(get_examples, nlp=self, **p_settings)
|
||||
self._link_components()
|
||||
self._optimizer = sgd
|
||||
if sgd is not None:
|
||||
self._optimizer = sgd
|
||||
elif self._optimizer is None:
|
||||
|
|
|
@ -37,30 +37,33 @@ def test_initialize_arguments():
|
|||
get_examples = lambda: [example]
|
||||
nlp.add_pipe(name)
|
||||
# The settings here will typically come from the [initialize] block
|
||||
init_cfg = {"tokenizer": {"custom": 1}, "components": {name: {}}}
|
||||
nlp.config["initialize"].update(init_cfg)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
# Empty settings, no required custom1 argument
|
||||
settings = {"tokenizer": {"custom": 1}, "components": {name: {}}}
|
||||
nlp.initialize(get_examples, settings=settings)
|
||||
# Empty config for component, no required custom1 argument
|
||||
nlp.initialize(get_examples)
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ("custom1",)
|
||||
assert errors[0]["type"] == "value_error.missing"
|
||||
init_cfg = {
|
||||
"tokenizer": {"custom": 1},
|
||||
"components": {name: {"custom1": "x", "custom2": 1}},
|
||||
}
|
||||
nlp.config["initialize"].update(init_cfg)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
# Wrong type
|
||||
settings = {
|
||||
"tokenizer": {"custom": 1},
|
||||
"components": {name: {"custom1": "x", "custom2": 1}},
|
||||
}
|
||||
nlp.initialize(get_examples, settings=settings)
|
||||
# Wrong type of custom 2
|
||||
nlp.initialize(get_examples)
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ("custom2",)
|
||||
assert errors[0]["type"] == "value_error.strictbool"
|
||||
settings = {
|
||||
init_cfg = {
|
||||
"tokenizer": {"custom": 1},
|
||||
"components": {name: {"custom1": "x", "custom2": True}},
|
||||
}
|
||||
nlp.initialize(get_examples, settings=settings)
|
||||
nlp.config["initialize"].update(init_cfg)
|
||||
nlp.initialize(get_examples)
|
||||
assert nlp.tokenizer.from_initialize == 1
|
||||
pipe = nlp.get_pipe(name)
|
||||
assert pipe.from_initialize == ("x", True)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Union, Dict, Optional, Any, List, IO
|
||||
from typing import Union, Dict, Optional, Any, List, IO, TYPE_CHECKING
|
||||
from thinc.api import Config, fix_random_seed, set_gpu_allocator
|
||||
from thinc.api import ConfigValidationError
|
||||
from pathlib import Path
|
||||
|
@ -11,16 +11,18 @@ import zipfile
|
|||
import tqdm
|
||||
|
||||
from .loop import create_before_to_disk_callback
|
||||
from ..language import Language
|
||||
from ..lookups import Lookups
|
||||
from ..vectors import Vectors
|
||||
from ..errors import Errors
|
||||
from ..schemas import ConfigSchemaTraining, ConfigSchemaInit, ConfigSchemaPretrain
|
||||
from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain
|
||||
from ..util import registry, load_model_from_config, resolve_dot_names
|
||||
from ..util import load_model, ensure_path, OOV_RANK, DEFAULT_OOV_PROB
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..language import Language # noqa: F401
|
||||
|
||||
def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Language:
|
||||
|
||||
def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> "Language":
|
||||
msg = Printer(no_print=silent)
|
||||
raw_config = config
|
||||
config = raw_config.interpolate()
|
||||
|
@ -38,11 +40,6 @@ def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Langu
|
|||
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
|
||||
dot_names = [T["train_corpus"], T["dev_corpus"]]
|
||||
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
|
||||
I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
|
||||
V = I["vocab"]
|
||||
init_vocab(
|
||||
nlp, data=V["data"], lookups=V["lookups"], vectors=V["vectors"], silent=silent
|
||||
)
|
||||
optimizer = T["optimizer"]
|
||||
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
|
||||
# Components that shouldn't be updated during training
|
||||
|
@ -55,16 +52,11 @@ def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Langu
|
|||
msg.info(f"Resuming training for: {resume_components}")
|
||||
nlp.resume_training(sgd=optimizer)
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer, settings=I)
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
|
||||
msg.good("Initialized pipeline components")
|
||||
# Verify the config after calling 'initialize' to ensure labels
|
||||
# are properly initialized
|
||||
verify_config(nlp)
|
||||
if "pretraining" in config and config["pretraining"]:
|
||||
P = registry.resolve(config["pretraining"], schema=ConfigSchemaPretrain)
|
||||
loaded = add_tok2vec_weights(nlp, P, V)
|
||||
if loaded and P["component"]:
|
||||
msg.good(f"Loaded pretrained weights into component '{P['component']}'")
|
||||
nlp = before_to_disk(nlp)
|
||||
return nlp
|
||||
|
||||
|
@ -75,13 +67,13 @@ def must_reinitialize(train_config: Config, init_config: Config) -> bool:
|
|||
|
||||
|
||||
def init_vocab(
|
||||
nlp: Language,
|
||||
nlp: "Language",
|
||||
*,
|
||||
data: Optional[Path] = None,
|
||||
lookups: Optional[Lookups] = None,
|
||||
vectors: Optional[str] = None,
|
||||
silent: bool = True,
|
||||
) -> Language:
|
||||
) -> "Language":
|
||||
msg = Printer(no_print=silent)
|
||||
if lookups:
|
||||
nlp.vocab.lookups = lookups
|
||||
|
@ -109,7 +101,7 @@ def init_vocab(
|
|||
|
||||
|
||||
def load_vectors_into_model(
|
||||
nlp: Language, name: Union[str, Path], *, add_strings: bool = True
|
||||
nlp: "Language", name: Union[str, Path], *, add_strings: bool = True
|
||||
) -> None:
|
||||
"""Load word vectors from an installed model or path into a model instance."""
|
||||
try:
|
||||
|
@ -132,8 +124,8 @@ def load_vectors_into_model(
|
|||
nlp.vocab.strings.add(vectors_nlp.vocab.strings[key])
|
||||
|
||||
|
||||
def add_tok2vec_weights(
|
||||
nlp: Language, pretrain_config: Dict[str, Any], vocab_config: Dict[str, Any]
|
||||
def init_tok2vec(
|
||||
nlp: "Language", pretrain_config: Dict[str, Any], vocab_config: Dict[str, Any]
|
||||
) -> bool:
|
||||
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
|
||||
P = pretrain_config
|
||||
|
@ -171,7 +163,7 @@ def add_tok2vec_weights(
|
|||
return False
|
||||
|
||||
|
||||
def verify_config(nlp: Language) -> None:
|
||||
def verify_config(nlp: "Language") -> None:
|
||||
"""Perform additional checks based on the config, loaded nlp object and training data."""
|
||||
# TODO: maybe we should validate based on the actual components, the list
|
||||
# in config["nlp"]["pipeline"] instead?
|
||||
|
@ -182,7 +174,7 @@ def verify_config(nlp: Language) -> None:
|
|||
verify_textcat_config(nlp, pipe_config)
|
||||
|
||||
|
||||
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
|
||||
def verify_textcat_config(nlp: "Language", pipe_config: Dict[str, Any]) -> None:
|
||||
# if 'positive_label' is provided: double check whether it's in the data and
|
||||
# the task is binary
|
||||
if pipe_config.get("positive_label"):
|
||||
|
@ -211,7 +203,7 @@ def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
|
|||
|
||||
|
||||
def convert_vectors(
|
||||
nlp: Language,
|
||||
nlp: "Language",
|
||||
vectors_loc: Optional[Path],
|
||||
*,
|
||||
truncate: int,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import List, Callable, Tuple, Dict, Iterable, Iterator, Union, Any
|
||||
from typing import Optional
|
||||
from typing import Optional, TYPE_CHECKING
|
||||
from pathlib import Path
|
||||
from timeit import default_timer as timer
|
||||
from thinc.api import Optimizer, Config, constant, fix_random_seed, set_gpu_allocator
|
||||
|
@ -9,13 +9,15 @@ from wasabi import Printer
|
|||
|
||||
from .example import Example
|
||||
from ..schemas import ConfigSchemaTraining
|
||||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from ..util import resolve_dot_names, registry
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..language import Language # noqa: F401
|
||||
|
||||
|
||||
def train(
|
||||
nlp: Language,
|
||||
nlp: "Language",
|
||||
output_path: Optional[Path] = None,
|
||||
*,
|
||||
use_gpu: int = -1,
|
||||
|
@ -110,7 +112,7 @@ def train(
|
|||
|
||||
|
||||
def train_while_improving(
|
||||
nlp: Language,
|
||||
nlp: "Language",
|
||||
optimizer: Optimizer,
|
||||
train_data,
|
||||
evaluate,
|
||||
|
@ -233,7 +235,7 @@ def subdivide_batch(batch, accumulate_gradient):
|
|||
|
||||
|
||||
def create_evaluation_callback(
|
||||
nlp: Language, dev_corpus: Callable, weights: Dict[str, float]
|
||||
nlp: "Language", dev_corpus: Callable, weights: Dict[str, float]
|
||||
) -> Callable[[], Tuple[float, Dict[str, float]]]:
|
||||
weights = {key: value for key, value in weights.items() if value is not None}
|
||||
|
||||
|
@ -277,7 +279,7 @@ def create_train_batches(
|
|||
|
||||
|
||||
def update_meta(
|
||||
training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any]
|
||||
training: Union[Dict[str, Any], Config], nlp: "Language", info: Dict[str, Any]
|
||||
) -> None:
|
||||
nlp.meta["performance"] = {}
|
||||
for metric in training["score_weights"]:
|
||||
|
@ -288,8 +290,10 @@ def update_meta(
|
|||
|
||||
|
||||
def create_before_to_disk_callback(
|
||||
callback: Optional[Callable[[Language], Language]]
|
||||
) -> Callable[[Language], Language]:
|
||||
callback: Optional[Callable[["Language"], "Language"]]
|
||||
) -> Callable[["Language"], "Language"]:
|
||||
from ..language import Language # noqa: F811
|
||||
|
||||
def before_to_disk(nlp: Language) -> Language:
|
||||
if not callback:
|
||||
return nlp
|
||||
|
|
Loading…
Reference in New Issue
Block a user