mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-29 06:57:49 +03:00 
			
		
		
		
	Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
		
						commit
						647d1a1efc
					
				|  | @ -2,7 +2,7 @@ cython>=0.25 | |||
| numpy>=1.15.0 | ||||
| cymem>=2.0.2,<2.1.0 | ||||
| preshed>=2.0.1,<2.1.0 | ||||
| thinc==7.0.0.dev0 | ||||
| thinc==7.0.0.dev1 | ||||
| blis>=0.2.2,<0.3.0 | ||||
| murmurhash>=0.28.0,<1.1.0 | ||||
| cytoolz>=0.9.0,<0.10.0 | ||||
|  |  | |||
							
								
								
									
										2
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								setup.py
									
									
									
									
									
								
							|  | @ -200,7 +200,7 @@ def setup_package(): | |||
|                 "murmurhash>=0.28.0,<1.1.0", | ||||
|                 "cymem>=2.0.2,<2.1.0", | ||||
|                 "preshed>=2.0.1,<2.1.0", | ||||
|                 "thinc==7.0.0.dev0", | ||||
|                 "thinc==7.0.0.dev1", | ||||
|                 "blis>=0.2.2,<0.3.0", | ||||
|                 "plac<1.0.0,>=0.9.6", | ||||
|                 "ujson>=1.35", | ||||
|  |  | |||
							
								
								
									
										12
									
								
								spacy/_ml.py
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								spacy/_ml.py
									
									
									
									
									
								
							|  | @ -48,11 +48,11 @@ def cosine(vec1, vec2): | |||
| 
 | ||||
| def create_default_optimizer(ops, **cfg): | ||||
|     learn_rate = util.env_opt('learn_rate', 0.001) | ||||
|     beta1 = util.env_opt('optimizer_B1', 0.9) | ||||
|     beta2 = util.env_opt('optimizer_B2', 0.9) | ||||
|     eps = util.env_opt('optimizer_eps', 1e-12) | ||||
|     beta1 = util.env_opt('optimizer_B1', 0.8) | ||||
|     beta2 = util.env_opt('optimizer_B2', 0.8) | ||||
|     eps = util.env_opt('optimizer_eps', 0.00001) | ||||
|     L2 = util.env_opt('L2_penalty', 1e-6) | ||||
|     max_grad_norm = util.env_opt('grad_norm_clip', 1.) | ||||
|     max_grad_norm = util.env_opt('grad_norm_clip', 5.) | ||||
|     optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, | ||||
|                      beta2=beta2, eps=eps) | ||||
|     optimizer.max_grad_norm = max_grad_norm | ||||
|  | @ -445,11 +445,11 @@ def getitem(i): | |||
| 
 | ||||
| 
 | ||||
| def build_tagger_model(nr_class, **cfg): | ||||
|     embed_size = util.env_opt('embed_size', 7000) | ||||
|     embed_size = util.env_opt('embed_size', 2000) | ||||
|     if 'token_vector_width' in cfg: | ||||
|         token_vector_width = cfg['token_vector_width'] | ||||
|     else: | ||||
|         token_vector_width = util.env_opt('token_vector_width', 128) | ||||
|         token_vector_width = util.env_opt('token_vector_width', 96) | ||||
|     pretrained_vectors = cfg.get('pretrained_vectors') | ||||
|     subword_features = cfg.get('subword_features', True) | ||||
|     with Model.define_operators({'>>': chain, '+': add}): | ||||
|  |  | |||
|  | @ -24,10 +24,12 @@ import sys | |||
| from collections import Counter | ||||
| 
 | ||||
| import spacy | ||||
| from spacy.attrs import ID | ||||
| from spacy.tokens import Doc | ||||
| from spacy.attrs import ID, HEAD | ||||
| from spacy.util import minibatch, minibatch_by_words, use_gpu, compounding, ensure_path | ||||
| from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer | ||||
| from thinc.v2v import Affine | ||||
| from thinc.api import wrap | ||||
| 
 | ||||
| 
 | ||||
| def prefer_gpu(): | ||||
|  | @ -47,13 +49,14 @@ def load_texts(path): | |||
|     ''' | ||||
|     path = ensure_path(path) | ||||
|     with path.open('r', encoding='utf8') as file_: | ||||
|         texts = [json.loads(line)['text'] for line in file_] | ||||
|         texts = [json.loads(line) for line in file_] | ||||
|     random.shuffle(texts) | ||||
|     return texts | ||||
| 
 | ||||
| 
 | ||||
| def stream_texts(): | ||||
|     for line in sys.stdin: | ||||
|         yield json.loads(line)['text'] | ||||
|         yield json.loads(line) | ||||
| 
 | ||||
| 
 | ||||
| def make_update(model, docs, optimizer, drop=0.): | ||||
|  | @ -65,11 +68,33 @@ def make_update(model, docs, optimizer, drop=0.): | |||
|     RETURNS loss: A float for the loss. | ||||
|     """ | ||||
|     predictions, backprop = model.begin_update(docs, drop=drop) | ||||
|     loss, gradients = get_vectors_loss(model.ops, docs, predictions) | ||||
|     gradients = get_vectors_loss(model.ops, docs, predictions) | ||||
|     backprop(gradients, sgd=optimizer) | ||||
|     # Don't want to return a cupy object here | ||||
|     # The gradients are modified in-place by the BERT MLM, | ||||
|     # so we get an accurate loss | ||||
|     loss = float((gradients**2).mean()) | ||||
|     return loss | ||||
| 
 | ||||
| 
 | ||||
| def make_docs(nlp, batch): | ||||
|     docs = [] | ||||
|     for record in batch: | ||||
|         text = record["text"] | ||||
|         if "tokens" in record: | ||||
|             doc = Doc(nlp.vocab, words=record["tokens"]) | ||||
|         else: | ||||
|             doc = nlp.make_doc(text) | ||||
|         if "heads" in record: | ||||
|             heads = record["heads"] | ||||
|             heads = numpy.asarray(heads, dtype="uint64") | ||||
|             heads = heads.reshape((len(doc), 1)) | ||||
|             doc = doc.from_array([HEAD], heads) | ||||
|         if len(doc) >= 1 and len(doc) < 200: | ||||
|             docs.append(doc) | ||||
|     return docs | ||||
| 
 | ||||
| 
 | ||||
| def get_vectors_loss(ops, docs, prediction): | ||||
|     """Compute a mean-squared error loss between the documents' vectors and | ||||
|     the prediction.     | ||||
|  | @ -84,10 +109,8 @@ def get_vectors_loss(ops, docs, prediction): | |||
|     # and look them up all at once. This prevents data copying. | ||||
|     ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs]) | ||||
|     target = docs[0].vocab.vectors.data[ids] | ||||
|     d_scores = (prediction - target) / prediction.shape[0] | ||||
|     # Don't want to return a cupy object here | ||||
|     loss = float((d_scores**2).sum()) | ||||
|     return loss, d_scores | ||||
|     d_scores = prediction - target | ||||
|     return d_scores | ||||
| 
 | ||||
| 
 | ||||
| def create_pretraining_model(nlp, tok2vec): | ||||
|  | @ -107,15 +130,77 @@ def create_pretraining_model(nlp, tok2vec): | |||
|         tok2vec, | ||||
|         output_layer | ||||
|     ) | ||||
|     model = masked_language_model(nlp.vocab, model) | ||||
|     model.tok2vec = tok2vec | ||||
|     model.output_layer = output_layer | ||||
|     model.begin_training([nlp.make_doc('Give it a doc to infer shapes')]) | ||||
|     return model | ||||
| 
 | ||||
| 
 | ||||
| def masked_language_model(vocab, model, mask_prob=0.15): | ||||
|     '''Convert a model into a BERT-style masked language model''' | ||||
|     vocab_words = [lex.text for lex in vocab if lex.prob != 0.0] | ||||
|     vocab_probs = [lex.prob for lex in vocab if lex.prob != 0.0] | ||||
|     vocab_words = vocab_words[:10000] | ||||
|     vocab_probs = vocab_probs[:10000] | ||||
|     vocab_probs = numpy.exp(numpy.array(vocab_probs, dtype='f')) | ||||
|     vocab_probs /= vocab_probs.sum() | ||||
|      | ||||
|     def mlm_forward(docs, drop=0.): | ||||
|         mask, docs = apply_mask(docs, vocab_words, vocab_probs, | ||||
|                                 mask_prob=mask_prob) | ||||
|         mask = model.ops.asarray(mask).reshape((mask.shape[0], 1)) | ||||
|         output, backprop = model.begin_update(docs, drop=drop) | ||||
| 
 | ||||
|         def mlm_backward(d_output, sgd=None): | ||||
|             d_output *= 1-mask | ||||
|             return backprop(d_output, sgd=sgd) | ||||
| 
 | ||||
|         return output, mlm_backward | ||||
| 
 | ||||
|     return wrap(mlm_forward, model) | ||||
| 
 | ||||
| 
 | ||||
| def apply_mask(docs, vocab_texts, vocab_probs, mask_prob=0.15): | ||||
|     N = sum(len(doc) for doc in docs) | ||||
|     mask = numpy.random.uniform(0., 1.0, (N,)) | ||||
|     mask = mask >= mask_prob | ||||
|     i = 0 | ||||
|     masked_docs = [] | ||||
|     for doc in docs: | ||||
|         words = [] | ||||
|         for token in doc: | ||||
|             if not mask[i]: | ||||
|                 word = replace_word(token.text, vocab_texts, vocab_probs) | ||||
|             else: | ||||
|                 word = token.text | ||||
|             words.append(word) | ||||
|             i += 1 | ||||
|         spaces = [bool(w.whitespace_) for w in doc] | ||||
|         # NB: If you change this implementation to instead modify | ||||
|         # the docs in place, take care that the IDs reflect the original | ||||
|         # words. Currently we use the original docs to make the vectors | ||||
|         # for the target, so we don't lose the original tokens. But if | ||||
|         # you modified the docs in place here, you would. | ||||
|         masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces)) | ||||
|     return mask, masked_docs | ||||
| 
 | ||||
| 
 | ||||
| def replace_word(word, vocab_texts, vocab_probs, mask='[MASK]'): | ||||
|     roll = random.random() | ||||
|     if roll < 0.8: | ||||
|         return mask | ||||
|     elif roll < 0.9: | ||||
|         index = numpy.random.choice(len(vocab_texts), p=vocab_probs) | ||||
|         return vocab_texts[index] | ||||
|     else: | ||||
|         return word | ||||
| 
 | ||||
| 
 | ||||
| class ProgressTracker(object): | ||||
|     def __init__(self, frequency=100000): | ||||
|         self.loss = 0. | ||||
|         self.loss = 0.0 | ||||
|         self.prev_loss = 0.0 | ||||
|         self.nr_word = 0 | ||||
|         self.words_per_epoch = Counter() | ||||
|         self.frequency = frequency | ||||
|  | @ -132,7 +217,15 @@ class ProgressTracker(object): | |||
|             wps = words_since_update / (time.time() - self.last_time) | ||||
|             self.last_update = self.nr_word | ||||
|             self.last_time = time.time() | ||||
|             status = (epoch, self.nr_word, '%.5f' % self.loss, int(wps)) | ||||
|             loss_per_word = self.loss - self.prev_loss | ||||
|             status = ( | ||||
|                 epoch, | ||||
|                 self.nr_word, | ||||
|                 "%.5f" % self.loss, | ||||
|                 "%.4f" % loss_per_word, | ||||
|                 int(wps), | ||||
|             ) | ||||
|             self.prev_loss = float(self.loss) | ||||
|             return status | ||||
|         else: | ||||
|             return None | ||||
|  | @ -145,12 +238,13 @@ class ProgressTracker(object): | |||
|     width=("Width of CNN layers", "option", "cw", int), | ||||
|     depth=("Depth of CNN layers", "option", "cd", int), | ||||
|     embed_rows=("Embedding rows", "option", "er", int), | ||||
|     use_vectors=("Whether to use the static vectors as input features", "flag", "uv"), | ||||
|     dropout=("Dropout", "option", "d", float), | ||||
|     seed=("Seed for random number generators", "option", "s", float), | ||||
|     nr_iter=("Number of iterations to pretrain", "option", "i", int), | ||||
| ) | ||||
| def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4, | ||||
|         embed_rows=1000, dropout=0.2, nr_iter=10, seed=0): | ||||
|         embed_rows=5000, use_vectors=False, dropout=0.2, nr_iter=100, seed=0): | ||||
|     """ | ||||
|     Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components, | ||||
|     using an approximate language-modelling objective. Specifically, we load | ||||
|  | @ -175,11 +269,13 @@ def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4, | |||
|     with (output_dir / 'config.json').open('w') as file_: | ||||
|         file_.write(json.dumps(config)) | ||||
|     has_gpu = prefer_gpu() | ||||
|     print("Use GPU?", has_gpu) | ||||
|     nlp = spacy.load(vectors_model) | ||||
|     pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name | ||||
|     model = create_pretraining_model(nlp, | ||||
|                 Tok2Vec(width, embed_rows, | ||||
|                     conv_depth=depth, | ||||
|                     pretrained_vectors=nlp.vocab.vectors.name, | ||||
|                     pretrained_vectors=pretrained_vectors, | ||||
|                     bilstm_depth=0, # Requires PyTorch. Experimental. | ||||
|                     cnn_maxout_pieces=2, # You can try setting this higher | ||||
|                     subword_features=True)) # Set to False for character models, e.g. Chinese | ||||
|  | @ -188,19 +284,19 @@ def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4, | |||
|     print('Epoch', '#Words', 'Loss', 'w/s') | ||||
|     texts = stream_texts() if texts_loc == '-' else load_texts(texts_loc)  | ||||
|     for epoch in range(nr_iter): | ||||
|         for batch in minibatch(texts, size=64): | ||||
|             docs = [nlp.make_doc(text) for text in batch] | ||||
|         for batch in minibatch(texts, size=256): | ||||
|             docs = make_docs(nlp, batch) | ||||
|             loss = make_update(model, docs, optimizer, drop=dropout) | ||||
|             progress = tracker.update(epoch, loss, docs) | ||||
|             if progress: | ||||
|                 print(*progress) | ||||
|                 if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**6: | ||||
|                 if texts_loc == '-' and tracker.words_per_epoch[epoch] >= 10**7: | ||||
|                     break | ||||
|         with model.use_params(optimizer.averages): | ||||
|             with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_: | ||||
|                 file_.write(model.tok2vec.to_bytes()) | ||||
|             with (output_dir / 'log.jsonl').open('a') as file_: | ||||
|                 file_.write(json.dumps({'nr_word': tracker.nr_word, | ||||
|                     'loss': tracker.loss, 'epoch': epoch})) | ||||
|                     'loss': tracker.loss, 'epoch': epoch}) + '\n') | ||||
|         if texts_loc != '-': | ||||
|             texts = load_texts(texts_loc) | ||||
|  |  | |||
|  | @ -90,11 +90,11 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0, | |||
|     # starts high and decays sharply, to force the optimizer to explore. | ||||
|     # Batch size starts at 1 and grows, so that we make updates quickly | ||||
|     # at the beginning of training. | ||||
|     dropout_rates = util.decaying(util.env_opt('dropout_from', 0.2), | ||||
|                                   util.env_opt('dropout_to', 0.2), | ||||
|     dropout_rates = util.decaying(util.env_opt('dropout_from', 0.1), | ||||
|                                   util.env_opt('dropout_to', 0.1), | ||||
|                                   util.env_opt('dropout_decay', 0.0)) | ||||
|     batch_sizes = util.compounding(util.env_opt('batch_from', 1000), | ||||
|                                    util.env_opt('batch_to', 1000), | ||||
|     batch_sizes = util.compounding(util.env_opt('batch_from', 750), | ||||
|                                    util.env_opt('batch_to', 750), | ||||
|                                    util.env_opt('batch_compound', 1.001)) | ||||
|     lang_class = util.get_lang_class(lang) | ||||
|     nlp = lang_class() | ||||
|  |  | |||
|  | @ -25,6 +25,7 @@ from .compat import json_dumps | |||
| 
 | ||||
| from libc.stdio cimport FILE, fopen, fclose, fread, fwrite, feof, fseek | ||||
| 
 | ||||
| 
 | ||||
| def tags_to_entities(tags): | ||||
|     entities = [] | ||||
|     start = None | ||||
|  | @ -110,19 +111,23 @@ class GoldCorpus(object): | |||
|         # Write temp directory with one doc per file, so we can shuffle | ||||
|         # and stream | ||||
|         self.tmp_dir = Path(tempfile.mkdtemp()) | ||||
|         self.write_msgpack(self.tmp_dir / 'train', train) | ||||
|         self.write_msgpack(self.tmp_dir / 'dev', dev) | ||||
|         self.write_msgpack(self.tmp_dir / 'train', train, limit=self.limit) | ||||
|         self.write_msgpack(self.tmp_dir / 'dev', dev, limit=self.limit) | ||||
| 
 | ||||
|     def __del__(self): | ||||
|         shutil.rmtree(self.tmp_dir) | ||||
| 
 | ||||
|     @staticmethod | ||||
|     def write_msgpack(directory, doc_tuples): | ||||
|     def write_msgpack(directory, doc_tuples, limit=0): | ||||
|         if not directory.exists(): | ||||
|             directory.mkdir() | ||||
|         n = 0 | ||||
|         for i, doc_tuple in enumerate(doc_tuples): | ||||
|             with open(directory / '{}.msg'.format(i), 'wb') as file_: | ||||
|                 msgpack.dump([doc_tuple], file_, use_bin_type=True, encoding='utf8') | ||||
|                 msgpack.dump([doc_tuple], file_, use_bin_type=True) | ||||
|             n += len(doc_tuple[1]) | ||||
|             if limit and n >= limit: | ||||
|                 break | ||||
|      | ||||
|     @staticmethod | ||||
|     def walk_corpus(path): | ||||
|  | @ -153,7 +158,7 @@ class GoldCorpus(object): | |||
|                 gold_tuples = read_json_file(loc) | ||||
|             elif loc.parts[-1].endswith('msg'): | ||||
|                 with loc.open('rb') as file_: | ||||
|                     gold_tuples = msgpack.load(file_, encoding='utf8') | ||||
|                     gold_tuples = msgpack.load(file_, raw=False) | ||||
|             else: | ||||
|                 msg = "Cannot read from file: %s. Supported formats: .json, .msg" | ||||
|                 raise ValueError(msg % loc) | ||||
|  | @ -350,7 +355,7 @@ def _json_iterate(loc): | |||
|                 py_str = py_raw[start : i+1].decode('utf8') | ||||
|                 try: | ||||
|                     yield json.loads(py_str) | ||||
|                 except: | ||||
|                 except Exception: | ||||
|                     print(py_str) | ||||
|                     raise | ||||
|                 start = -1 | ||||
|  |  | |||
|  | @ -759,7 +759,7 @@ class Tagger(Pipe): | |||
|             if self.model is True: | ||||
|                 token_vector_width = util.env_opt( | ||||
|                     'token_vector_width', | ||||
|                     self.cfg.get('token_vector_width', 128)) | ||||
|                     self.cfg.get('token_vector_width', 96)) | ||||
|                 self.model = self.Model(self.vocab.morphology.n_tags, | ||||
|                                         **self.cfg) | ||||
|             self.model.from_bytes(b) | ||||
|  | @ -878,7 +878,7 @@ class MultitaskObjective(Tagger): | |||
| 
 | ||||
|     @classmethod | ||||
|     def Model(cls, n_tags, tok2vec=None, **cfg): | ||||
|         token_vector_width = util.env_opt('token_vector_width', 128) | ||||
|         token_vector_width = util.env_opt('token_vector_width', 96) | ||||
|         softmax = Softmax(n_tags, token_vector_width) | ||||
|         model = chain( | ||||
|             tok2vec, | ||||
|  |  | |||
|  | @ -63,9 +63,9 @@ cdef class Parser: | |||
|         parser_maxout_pieces = util.env_opt('parser_maxout_pieces', | ||||
|                                             cfg.get('maxout_pieces', 2)) | ||||
|         token_vector_width = util.env_opt('token_vector_width', | ||||
|                                            cfg.get('token_vector_width', 128)) | ||||
|         hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 128)) | ||||
|         embed_size = util.env_opt('embed_size', cfg.get('embed_size', 5000)) | ||||
|                                            cfg.get('token_vector_width', 96)) | ||||
|         hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64)) | ||||
|         embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000)) | ||||
|         pretrained_vectors = cfg.get('pretrained_vectors', None) | ||||
|         tok2vec = Tok2Vec(token_vector_width, embed_size, | ||||
|                           conv_depth=conv_depth, | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user