mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add pipeline component examples
This commit is contained in:
parent
7a592d01dc
commit
6679117000
53
examples/pipeline/custom_attr_methods.py
Normal file
53
examples/pipeline/custom_attr_methods.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
# coding: utf-8
|
||||
"""This example contains several snippets of methods that can be set via custom
|
||||
Doc, Token or Span attributes in spaCy v2.0. Attribute methods act like
|
||||
they're "bound" to the object and are partially applied – i.e. the object
|
||||
they're called on is passed in as the first argument."""
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens.doc import Doc
|
||||
from spacy.tokens.span import Span
|
||||
from spacy import displacy
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def to_html(doc, output='/tmp', style='dep'):
|
||||
"""Doc method extension for saving the current state as a displaCy
|
||||
visualization.
|
||||
"""
|
||||
# generate filename from first six non-punct tokens
|
||||
file_name = '-'.join([w.text for w in doc[:6] if not w.is_punct]) + '.html'
|
||||
output_path = Path(output) / file_name
|
||||
html = displacy.render(doc, style=style, page=True) # render markup
|
||||
output_path.open('w', encoding='utf-8').write(html) # save to file
|
||||
print('Saved HTML to {}'.format(output_path))
|
||||
|
||||
|
||||
Doc.set_extension('to_html', method=to_html)
|
||||
|
||||
nlp = English()
|
||||
doc = nlp(u"This is a sentence about Apple.")
|
||||
# add entity manually for demo purposes, to make it work without a model
|
||||
doc.ents = [Span(doc, 5, 6, label=nlp.vocab.strings['ORG'])]
|
||||
doc._.to_html(style='ent')
|
||||
|
||||
|
||||
def overlap_tokens(doc, other_doc):
|
||||
"""Get the tokens from the original Doc that are also in the comparison Doc.
|
||||
"""
|
||||
overlap = []
|
||||
other_tokens = [token.text for token in other_doc]
|
||||
for token in doc:
|
||||
if token.text in other_tokens:
|
||||
overlap.append(token)
|
||||
return overlap
|
||||
|
||||
|
||||
Doc.set_extension('overlap', method=overlap_tokens)
|
||||
|
||||
nlp = English()
|
||||
doc1 = nlp(u"Peach emoji is where it has always been.")
|
||||
doc2 = nlp(u"Peach is the superior emoji.")
|
||||
tokens = doc1._.overlap(doc2)
|
||||
print(tokens)
|
110
examples/pipeline/custom_component_countries_api.py
Normal file
110
examples/pipeline/custom_component_countries_api.py
Normal file
|
@ -0,0 +1,110 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import requests
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens.doc import Doc
|
||||
from spacy.tokens.span import Span
|
||||
from spacy.tokens.token import Token
|
||||
|
||||
|
||||
class RESTCountriesComponent(object):
|
||||
"""Example of a spaCy v2.0 pipeline component that requests all countries
|
||||
via the REST Countries API, merges country names into one token, assigns
|
||||
entity labels and sets attributes on country tokens, e.g. the capital and
|
||||
lat/lng coordinates. Can be extended with more details from the API.
|
||||
|
||||
REST Countries API: https://restcountries.eu
|
||||
API License: Mozilla Public License MPL 2.0
|
||||
"""
|
||||
name = 'rest_countries' # component name, will show up in the pipeline
|
||||
|
||||
def __init__(self, nlp, label='GPE'):
|
||||
"""Initialise the pipeline component. The shared nlp instance is used
|
||||
to initialise the matcher with the shared vocab, get the label ID and
|
||||
generate Doc objects as phrase match patterns.
|
||||
"""
|
||||
# Make request once on initialisation and store the data
|
||||
r = requests.get('https://restcountries.eu/rest/v2/all')
|
||||
r.raise_for_status() # make sure requests raises an error if it fails
|
||||
countries = r.json()
|
||||
|
||||
# Convert API response to dict keyed by country name for easy lookup
|
||||
# This could also be extended using the alternative and foreign language
|
||||
# names provided by the API
|
||||
self.countries = {c['name']: c for c in countries}
|
||||
self.label = nlp.vocab.strings[label] # get entity label ID
|
||||
|
||||
# Set up the PhraseMatcher with Doc patterns for each country name
|
||||
patterns = [nlp(c) for c in self.countries.keys()]
|
||||
self.matcher = PhraseMatcher(nlp.vocab)
|
||||
self.matcher.add('COUNTRIES', None, *patterns)
|
||||
|
||||
# Register attribute on the Token. We'll be overwriting this based on
|
||||
# the matches, so we're only setting a default value, not a getter.
|
||||
# If no default value is set, it defaults to None.
|
||||
Token.set_extension('is_country', default=False)
|
||||
Token.set_extension('country_capital')
|
||||
Token.set_extension('country_latlng')
|
||||
Token.set_extension('country_flag')
|
||||
|
||||
# Register attributes on Doc and Span via a getter that checks if one of
|
||||
# the contained tokens is set to is_country == True.
|
||||
Doc.set_extension('has_country', getter=self.has_country)
|
||||
Span.set_extension('has_country', getter=self.has_country)
|
||||
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipeline component on a Doc object and modify it if matches
|
||||
are found. Return the Doc, so it can be processed by the next component
|
||||
in the pipeline, if available.
|
||||
"""
|
||||
matches = self.matcher(doc)
|
||||
spans = [] # keep the spans for later so we can merge them afterwards
|
||||
for _, start, end in matches:
|
||||
# Generate Span representing the entity & set label
|
||||
entity = Span(doc, start, end, label=self.label)
|
||||
spans.append(entity)
|
||||
# Set custom attribute on each token of the entity
|
||||
# Can be extended with other data returned by the API, like
|
||||
# currencies, country code, flag, calling code etc.
|
||||
for token in entity:
|
||||
token._.set('is_country', True)
|
||||
token._.set('country_capital', self.countries[entity.text]['capital'])
|
||||
token._.set('country_latlng', self.countries[entity.text]['latlng'])
|
||||
token._.set('country_flag', self.countries[entity.text]['flag'])
|
||||
# Overwrite doc.ents and add entity – be careful not to replace!
|
||||
doc.ents = list(doc.ents) + [entity]
|
||||
for span in spans:
|
||||
# Iterate over all spans and merge them into one token. This is done
|
||||
# after setting the entities – otherwise, it would cause mismatched
|
||||
# indices!
|
||||
span.merge()
|
||||
return doc # don't forget to return the Doc!
|
||||
|
||||
def has_country(self, tokens):
|
||||
"""Getter for Doc and Span attributes. Returns True if one of the tokens
|
||||
is a country. Since the getter is only called when we access the
|
||||
attribute, we can refer to the Token's 'is_country' attribute here,
|
||||
which is already set in the processing step."""
|
||||
return any([t._.get('is_country') for t in tokens])
|
||||
|
||||
|
||||
# For simplicity, we start off with only the blank English Language class and
|
||||
# no model or pre-defined pipeline loaded.
|
||||
|
||||
nlp = English()
|
||||
rest_countries = RESTCountriesComponent(nlp) # initialise component
|
||||
nlp.add_pipe(rest_countries) # add it to the pipeline
|
||||
|
||||
doc = nlp(u"Some text about Colombia and the Czech Republic")
|
||||
|
||||
print('Pipeline', nlp.pipe_names) # pipeline contains component name
|
||||
print('Doc has countries', doc._.has_country) # Doc contains countries
|
||||
for token in doc:
|
||||
if token._.is_country:
|
||||
print(token.text, token._.country_capital, token._.country_latlng,
|
||||
token._.country_flag) # country data
|
||||
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all countries are entities
|
87
examples/pipeline/custom_component_entities.py
Normal file
87
examples/pipeline/custom_component_entities.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens.doc import Doc
|
||||
from spacy.tokens.span import Span
|
||||
from spacy.tokens.token import Token
|
||||
|
||||
|
||||
class TechCompanyRecognizer(object):
|
||||
"""Example of a spaCy v2.0 pipeline component that sets entity annotations
|
||||
based on list of single or multiple-word company names. Companies are
|
||||
labelled as ORG and their spans are merged into one token. Additionally,
|
||||
._.has_tech_org and ._.is_tech_org is set on the Doc/Span and Token
|
||||
respectively."""
|
||||
name = 'tech_companies' # component name, will show up in the pipeline
|
||||
|
||||
def __init__(self, nlp, companies=tuple(), label='ORG'):
|
||||
"""Initialise the pipeline component. The shared nlp instance is used
|
||||
to initialise the matcher with the shared vocab, get the label ID and
|
||||
generate Doc objects as phrase match patterns.
|
||||
"""
|
||||
self.label = nlp.vocab.strings[label] # get entity label ID
|
||||
|
||||
# Set up the PhraseMatcher – it can now take Doc objects as patterns,
|
||||
# so even if the list of companies is long, it's very efficient
|
||||
patterns = [nlp(org) for org in companies]
|
||||
self.matcher = PhraseMatcher(nlp.vocab)
|
||||
self.matcher.add('TECH_ORGS', None, *patterns)
|
||||
|
||||
# Register attribute on the Token. We'll be overwriting this based on
|
||||
# the matches, so we're only setting a default value, not a getter.
|
||||
Token.set_extension('is_tech_org', default=False)
|
||||
|
||||
# Register attributes on Doc and Span via a getter that checks if one of
|
||||
# the contained tokens is set to is_tech_org == True.
|
||||
Doc.set_extension('has_tech_org', getter=self.has_tech_org)
|
||||
Span.set_extension('has_tech_org', getter=self.has_tech_org)
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Apply the pipeline component on a Doc object and modify it if matches
|
||||
are found. Return the Doc, so it can be processed by the next component
|
||||
in the pipeline, if available.
|
||||
"""
|
||||
matches = self.matcher(doc)
|
||||
spans = [] # keep the spans for later so we can merge them afterwards
|
||||
for _, start, end in matches:
|
||||
# Generate Span representing the entity & set label
|
||||
entity = Span(doc, start, end, label=self.label)
|
||||
spans.append(entity)
|
||||
# Set custom attribute on each token of the entity
|
||||
for token in entity:
|
||||
token._.set('is_tech_org', True)
|
||||
# Overwrite doc.ents and add entity – be careful not to replace!
|
||||
doc.ents = list(doc.ents) + [entity]
|
||||
for span in spans:
|
||||
# Iterate over all spans and merge them into one token. This is done
|
||||
# after setting the entities – otherwise, it would cause mismatched
|
||||
# indices!
|
||||
span.merge()
|
||||
return doc # don't forget to return the Doc!
|
||||
|
||||
def has_tech_org(self, tokens):
|
||||
"""Getter for Doc and Span attributes. Returns True if one of the tokens
|
||||
is a tech org. Since the getter is only called when we access the
|
||||
attribute, we can refer to the Token's 'is_tech_org' attribute here,
|
||||
which is already set in the processing step."""
|
||||
return any([t._.get('is_tech_org') for t in tokens])
|
||||
|
||||
|
||||
# For simplicity, we start off with only the blank English Language class and
|
||||
# no model or pre-defined pipeline loaded.
|
||||
|
||||
nlp = English()
|
||||
companies = ['Alphabet Inc.', 'Google', 'Netflix', 'Apple'] # etc.
|
||||
component = TechCompanyRecognizer(nlp, companies) # initialise component
|
||||
nlp.add_pipe(component, last=True) # add it to the pipeline as the last element
|
||||
|
||||
doc = nlp(u"Alphabet Inc. is the company behind Google.")
|
||||
|
||||
print('Pipeline', nlp.pipe_names) # pipeline contains component name
|
||||
print('Tokens', [t.text for t in doc]) # company names from the list are merged
|
||||
print('Doc has_tech_org', doc._.has_tech_org) # Doc contains tech orgs
|
||||
print('Token 0 is_tech_org', doc[0]._.is_tech_org) # "Alphabet Inc." is a tech org
|
||||
print('Token 1 is_tech_org', doc[1]._.is_tech_org) # "is" is not
|
||||
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all orgs are entities
|
|
@ -195,6 +195,7 @@
|
|||
"teaser": "Full code examples you can modify and run.",
|
||||
"next": "resources",
|
||||
"menu": {
|
||||
"Pipeline": "pipeline",
|
||||
"Matching": "matching",
|
||||
"Training": "training",
|
||||
"Deep Learning": "deep-learning"
|
||||
|
|
|
@ -2,6 +2,44 @@
|
|||
|
||||
include ../_includes/_mixins
|
||||
|
||||
+section("pipeline")
|
||||
+h(3, "custom-components-entities") Custom pipeline components and attribute extensions
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| This example shows the implementation of a pipeline component
|
||||
| that sets entity annotations based on a list of single or
|
||||
| multiple-word company names, merges entities into one token and
|
||||
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||
| #[code Token].
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_entities.py")
|
||||
|
||||
+h(3, "custom-components-api")
|
||||
| Custom pipeline components and attribute extensions via a REST API
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| This example shows the implementation of a pipeline component
|
||||
| that fetches country meta data via the
|
||||
| #[+a("https://restcountries.eu") REST Countries API] sets entity
|
||||
| annotations for countries, merges entities into one token and
|
||||
| sets custom attributes on the #[code Doc], #[code Span] and
|
||||
| #[code Token] – for example, the capital, latitude/longitude
|
||||
| coordinates and the country flag.
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_component_countries_api.py")
|
||||
|
||||
+h(3, "custom-components-attr-methods") Custom method extensions
|
||||
+tag-new(2)
|
||||
|
||||
p
|
||||
| A collection of snippets showing examples of extensions adding
|
||||
| custom methods to the #[code Doc], #[code Token] and
|
||||
| #[code Span].
|
||||
|
||||
+github("spacy", "examples/pipeline/custom_attr_methods.py")
|
||||
|
||||
+section("matching")
|
||||
+h(3, "matcher") Using spaCy's rule-based matcher
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user