mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Remove the state argument from Language
This commit is contained in:
parent
09a877886b
commit
66ea9aebe7
|
@ -145,7 +145,7 @@ class Language(object):
|
|||
else:
|
||||
self.pipeline = []
|
||||
|
||||
def __call__(self, text, state=None, **disabled):
|
||||
def __call__(self, text, **disabled):
|
||||
"""
|
||||
Apply the pipeline to some text. The text can span multiple sentences,
|
||||
and can contain arbtrary whitespace. Alignment into the original string
|
||||
|
@ -153,7 +153,6 @@ class Language(object):
|
|||
|
||||
Args:
|
||||
text (unicode): The text to be processed.
|
||||
state: Arbitrary
|
||||
|
||||
Returns:
|
||||
doc (Doc): A container for accessing the annotations.
|
||||
|
@ -170,31 +169,28 @@ class Language(object):
|
|||
name = getattr(proc, 'name', None)
|
||||
if name in disabled and not disabled[name]:
|
||||
continue
|
||||
state = proc(doc, state=state)
|
||||
proc(doc)
|
||||
return doc
|
||||
|
||||
def update(self, docs, golds, state=None, drop=0., sgd=None):
|
||||
def update(self, docs, golds, drop=0., sgd=None):
|
||||
grads = {}
|
||||
def get_grads(W, dW, key=None):
|
||||
grads[key] = (W, dW)
|
||||
state = {} if state is None else state
|
||||
for process in self.pipeline:
|
||||
if hasattr(process, 'update'):
|
||||
state = process.update(docs, golds,
|
||||
state=state,
|
||||
drop=drop,
|
||||
sgd=get_grads)
|
||||
else:
|
||||
process(docs, state=state)
|
||||
if sgd is not None:
|
||||
for key, (W, dW) in grads.items():
|
||||
# TODO: Unhack this when thinc improves
|
||||
if isinstance(W, numpy.ndarray):
|
||||
sgd.ops = NumpyOps()
|
||||
else:
|
||||
sgd.ops = CupyOps()
|
||||
sgd(W, dW, key=key)
|
||||
return state
|
||||
tok2vec = self.pipeline[0]
|
||||
feats = tok2vec.doc2feats(docs)
|
||||
for proc in self.pipeline[1:]:
|
||||
tokvecs, bp_tokvecs = tok2vec.model.begin_update(feats, drop=drop)
|
||||
grads = {}
|
||||
d_tokvecs = proc.update((docs, tokvecs), golds, sgd=get_grads, drop=drop)
|
||||
bp_tokvecs(d_tokvecs, sgd=get_grads)
|
||||
if sgd is not None:
|
||||
for key, (W, dW) in grads.items():
|
||||
# TODO: Unhack this when thinc improves
|
||||
if isinstance(W, numpy.ndarray):
|
||||
sgd.ops = NumpyOps()
|
||||
else:
|
||||
sgd.ops = CupyOps()
|
||||
sgd(W, dW, key=key)
|
||||
|
||||
@contextmanager
|
||||
def begin_training(self, gold_tuples, **cfg):
|
||||
|
@ -248,18 +244,18 @@ class Language(object):
|
|||
parse (bool)
|
||||
entity (bool)
|
||||
"""
|
||||
#stream = ((self.make_doc(text), None) for text in texts)
|
||||
stream = ((doc, {}) for doc in texts)
|
||||
#docs = (self.make_doc(text) for text in texts)
|
||||
docs = texts
|
||||
for proc in self.pipeline:
|
||||
name = getattr(proc, 'name', None)
|
||||
if name in disabled and not disabled[name]:
|
||||
continue
|
||||
|
||||
if hasattr(proc, 'pipe'):
|
||||
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
|
||||
docs = proc.pipe(docs, n_threads=n_threads, batch_size=batch_size)
|
||||
else:
|
||||
stream = (proc(doc, state) for doc, state in stream)
|
||||
for doc, state in stream:
|
||||
docs = (proc(doc) for doc in docs)
|
||||
for doc in docs:
|
||||
yield doc
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
|
|
Loading…
Reference in New Issue
Block a user