mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 00:04:15 +03:00
* Work on reorganization of docs
This commit is contained in:
parent
63f86efa8b
commit
67979a8008
|
@ -54,11 +54,12 @@ and a small usage snippet.
|
|||
.. toctree::
|
||||
:maxdepth: 4
|
||||
|
||||
loading.rst
|
||||
processing.rst
|
||||
using/document.rst
|
||||
using/span.rst
|
||||
using/token.rst
|
||||
using/lexeme.rst
|
||||
lookup.rst
|
||||
|
||||
|
||||
.. _English: processing.html
|
||||
|
|
|
@ -1,27 +1,6 @@
|
|||
=================
|
||||
Loading Resources
|
||||
=================
|
||||
|
||||
99\% of the time, you will load spaCy's resources using a language pipeline class,
|
||||
e.g. `spacy.en.English`. The pipeline class reads the data from disk, from a
|
||||
specified directory. By default, spaCy installs data into each language's
|
||||
package directory, and loads it from there.
|
||||
|
||||
Usually, this is all you will need:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
|
||||
If you need to replace some of the components, you may want to just make your
|
||||
own pipeline class --- the English class itself does almost no work; it just
|
||||
applies the modules in order. You can also provide a function or class that
|
||||
produces a tokenizer, tagger, parser or entity recognizer to :code:`English.__init__`,
|
||||
to customize the pipeline:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> from my_module import MyTagger
|
||||
>>> nlp = English(Tagger=MyTagger)
|
||||
|
||||
In more detail:
|
||||
|
||||
.. code::
|
||||
|
@ -44,12 +23,12 @@ In more detail:
|
|||
|
||||
:code:`Tokenizer`
|
||||
:code:`(Vocab vocab, unicode data_dir)(unicode) --> Doc`
|
||||
|
||||
|
||||
A class/function that creates the tokenizer.
|
||||
|
||||
:code:`Tagger` / :code:`Parser` / :code:`Entity`
|
||||
:code:`(Vocab vocab, unicode data_dir)(Doc) --> None`
|
||||
|
||||
|
||||
A class/function that creates the part-of-speech tagger /
|
||||
syntactic dependency parser / named entity recogniser.
|
||||
May be None or False, to disable tagging.
|
||||
|
|
|
@ -17,33 +17,95 @@ up in the vocabulary directly:
|
|||
|
||||
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
|
||||
|
||||
.. py:method:: __len__(self) --> int
|
||||
.. py:method:: __len__(self)
|
||||
|
||||
.. py:method:: __getitem__(self, id: int) --> unicode
|
||||
:returns: number of words in the vocabulary
|
||||
:rtype: int
|
||||
|
||||
.. py:method:: __getitem__(self, string: unicode) --> int
|
||||
.. py:method:: __getitem__(self, key_int)
|
||||
|
||||
.. py:method:: __setitem__(self, py_str: unicode, props: Dict[str, int[float]) --> None
|
||||
:param int key:
|
||||
Integer ID
|
||||
|
||||
.. py:method:: dump(self, loc: unicode) --> None
|
||||
:returns: A Lexeme object
|
||||
|
||||
.. py:method:: load_lexemes(self, loc: unicode) --> None
|
||||
.. py:method:: __getitem__(self, key_str)
|
||||
|
||||
.. py:method:: load_vectors(self, loc: unicode) --> None
|
||||
:param unicode key_str:
|
||||
A string in the vocabulary
|
||||
|
||||
:rtype: Lexeme
|
||||
|
||||
|
||||
.. py:method:: __setitem__(self, orth_str, props)
|
||||
|
||||
:param unicode orth_str:
|
||||
The orth key
|
||||
|
||||
:param dict props:
|
||||
A props dictionary
|
||||
|
||||
:returns: None
|
||||
|
||||
.. py:method:: dump(self, loc)
|
||||
|
||||
:param unicode loc:
|
||||
Path where the vocabulary should be saved
|
||||
|
||||
.. py:method:: load_lexemes(self, loc)
|
||||
|
||||
:param unicode loc:
|
||||
Path to load the lexemes.bin file from
|
||||
|
||||
.. py:method:: load_vectors(self, loc)
|
||||
|
||||
:param unicode loc:
|
||||
Path to load the vectors.bin from
|
||||
|
||||
|
||||
.. py:class:: strings.StringStore(self)
|
||||
|
||||
.. py:method:: __len__(self) --> int
|
||||
.. py:method:: __len__(self)
|
||||
|
||||
.. py:method:: __getitem__(self, id: int) --> unicode
|
||||
:returns:
|
||||
Number of strings in the string-store
|
||||
|
||||
.. py:method:: __getitem__(self, string: bytes) --> id
|
||||
.. py:method:: __getitem__(self, key_int)
|
||||
|
||||
.. py:method:: __getitem__(self, string: unicode) --> id
|
||||
:param int key_int: An integer key
|
||||
|
||||
.. py:method:: dump(self, loc: unicode) --> None
|
||||
:returns:
|
||||
The string that the integer key maps to
|
||||
|
||||
.. py:method:: load(self, loc: unicode) --> None
|
||||
:rtype: unicode
|
||||
|
||||
.. py:method:: __getitem__(self, key_unicode)
|
||||
|
||||
:param int key_unicode:
|
||||
A key, as a unicode string
|
||||
|
||||
:returns:
|
||||
The integer ID of the string.
|
||||
|
||||
:rtype: int
|
||||
|
||||
.. py:method:: __getitem__(self, key_utf8_bytes)
|
||||
|
||||
:param int key_utf8_bytes:
|
||||
A key, as a UTF-8 encoded byte-string
|
||||
|
||||
:returns:
|
||||
The integer ID of the string.
|
||||
|
||||
:rtype:
|
||||
int
|
||||
|
||||
.. py:method:: dump(self, loc)
|
||||
|
||||
:param loc:
|
||||
File path to save the strings.txt to.
|
||||
|
||||
.. py:method:: load(self, loc)
|
||||
|
||||
:param loc:
|
||||
File path to load the strings.txt from.
|
||||
|
|
|
@ -1,33 +1,76 @@
|
|||
===============
|
||||
Processing Text
|
||||
===============
|
||||
================
|
||||
spacy.en.English
|
||||
================
|
||||
|
||||
|
||||
99\% of the time, you will load spaCy's resources using a language pipeline class,
|
||||
e.g. `spacy.en.English`. The pipeline class reads the data from disk, from a
|
||||
specified directory. By default, spaCy installs data into each language's
|
||||
package directory, and loads it from there.
|
||||
|
||||
Usually, this is all you will need:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
|
||||
If you need to replace some of the components, you may want to just make your
|
||||
own pipeline class --- the English class itself does almost no work; it just
|
||||
applies the modules in order. You can also provide a function or class that
|
||||
produces a tokenizer, tagger, parser or entity recognizer to :code:`English.__init__`,
|
||||
to customize the pipeline:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> from my_module import MyTagger
|
||||
>>> nlp = English(Tagger=MyTagger)
|
||||
|
||||
The text processing API is very small and simple. Everything is a callable object,
|
||||
and you will almost always apply the pipeline all at once.
|
||||
|
||||
Applying a pipeline
|
||||
-------------------
|
||||
|
||||
.. py:class:: spacy.en.English
|
||||
|
||||
.. py:method:: __init__(self, data_dir=..., Tokenizer=..., Tagger=..., Parser=..., Entity=..., Matcher=..., Packer=None, load_vectors=True)
|
||||
|
||||
.. py:method:: English.__call__(text, tag=True, parse=True, entity=True) --> Doc
|
||||
:param unicode data_dir:
|
||||
The data directory. May be None, to disable any data loading (including
|
||||
the vocabulary).
|
||||
|
||||
:param Tokenizer:
|
||||
A class/function that creates the tokenizer.
|
||||
|
||||
text (unicode)
|
||||
The text to be processed. No pre-processing needs to be applied, and any
|
||||
length of text can be submitted. Usually you will submit a whole document.
|
||||
Text may be zero-length. An exception is raised if byte strings are supplied.
|
||||
:param Tagger:
|
||||
A class/function that creates the part-of-speech tagger.
|
||||
|
||||
tag (bool)
|
||||
Whether to apply the part-of-speech tagger. Required for parsing and entity recognition.
|
||||
:param Parser:
|
||||
A class/function that creates the dependency parser.
|
||||
|
||||
parse (bool)
|
||||
Whether to apply the syntactic dependency parser.
|
||||
:param Entity:
|
||||
A class/function that creates the named entity recogniser.
|
||||
|
||||
entity (bool)
|
||||
Whether to apply the named entity recognizer.
|
||||
:param bool load_vectors:
|
||||
A boolean value to control whether the word vectors are loaded.
|
||||
|
||||
.. py:method:: __call__(text, tag=True, parse=True, entity=True) --> Doc
|
||||
|
||||
**Examples**
|
||||
:param unicode text:
|
||||
The text to be processed. No pre-processing needs to be applied, and any
|
||||
length of text can be submitted. Usually you will submit a whole document.
|
||||
Text may be zero-length. An exception is raised if byte strings are supplied.
|
||||
|
||||
:param bool tag:
|
||||
Whether to apply the part-of-speech tagger. Required for parsing and entity
|
||||
recognition.
|
||||
|
||||
:param bool parse:
|
||||
Whether to apply the syntactic dependency parser.
|
||||
|
||||
:param bool entity:
|
||||
Whether to apply the named entity recognizer.
|
||||
|
||||
:return: A document
|
||||
:rtype: :py:class:`spacy.tokens.Doc`
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from spacy.en import English
|
||||
>>> nlp = English()
|
||||
|
@ -44,24 +87,3 @@ entity (bool)
|
|||
TypeError: Argument 'string' has incorrect type (expected unicode, got str)
|
||||
>>> doc = nlp(b'Some text'.decode('utf8')) # Encode to unicode first.
|
||||
>>>
|
||||
|
||||
|
||||
Tokenizer
|
||||
---------
|
||||
|
||||
|
||||
.. autoclass:: spacy.tokenizer.Tokenizer
|
||||
:members:
|
||||
|
||||
|
||||
Tagger
|
||||
------
|
||||
|
||||
.. autoclass:: spacy.en.pos.EnPosTagger
|
||||
:members:
|
||||
|
||||
Parser and Entity Recognizer
|
||||
----------------------------
|
||||
|
||||
.. autoclass:: spacy.syntax.parser.Parser
|
||||
:members:
|
||||
|
|
|
@ -2,69 +2,93 @@
|
|||
The Doc Object
|
||||
==============
|
||||
|
||||
.. autoclass:: spacy.tokens.Tokens
|
||||
|
||||
:code:`__getitem__`, :code:`__iter__`, :code:`__len__`
|
||||
The Tokens class behaves as a Python sequence, supporting the usual operators,
|
||||
len(), etc. Negative indexing is supported. Slices are not yet.
|
||||
.. py:class:: spacy.tokens.doc.Doc
|
||||
|
||||
.. code::
|
||||
.. py:method:: __init__(self, Vocab vocab, orths_and_spaces=None)
|
||||
|
||||
>>> tokens = nlp(u'Zero one two three four five six')
|
||||
>>> tokens[0].orth_
|
||||
u'Zero'
|
||||
>>> tokens[-1].orth_
|
||||
u'six'
|
||||
>>> tokens[0:4]
|
||||
Error
|
||||
:param Vocab vocab: A vocabulary object.
|
||||
|
||||
:code:`sents`
|
||||
Iterate over sentences in the document.
|
||||
:param list orths_and_spaces=None: Defaults to None.
|
||||
|
||||
:code:`ents`
|
||||
Iterate over entities in the document.
|
||||
.. py:method:: __getitem__(self, int i)
|
||||
|
||||
:returns: Token
|
||||
|
||||
:code:`to_array`
|
||||
Given a list of M attribute IDs, export the tokens to a numpy ndarray
|
||||
of shape N*M, where N is the length of the sentence.
|
||||
.. py:method:: __getitem__(self, slice start_colon_end)
|
||||
|
||||
Arguments:
|
||||
attr_ids (list[int]): A list of attribute ID ints.
|
||||
:returns: Span
|
||||
|
||||
Returns:
|
||||
feat_array (numpy.ndarray[long, ndim=2]):
|
||||
A feature matrix, with one row per word, and one column per attribute
|
||||
indicated in the input attr_ids.
|
||||
|
||||
:code:`count_by`
|
||||
Produce a dict of {attribute (int): count (ints)} frequencies, keyed
|
||||
by the values of the given attribute ID.
|
||||
.. py:method:: __iter__(self)
|
||||
|
||||
>>> from spacy.en import English, attrs
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp(u'apple apple orange banana')
|
||||
>>> tokens.count_by(attrs.ORTH)
|
||||
{12800L: 1, 11880L: 2, 7561L: 1}
|
||||
>>> tokens.to_array([attrs.ORTH])
|
||||
array([[11880],
|
||||
[11880],
|
||||
[ 7561],
|
||||
[12800]])
|
||||
Iterate over tokens
|
||||
|
||||
.. code::
|
||||
|
||||
:code:`merge`
|
||||
Merge a multi-word expression into a single token. Currently
|
||||
experimental; API is likely to change.
|
||||
>>> tokens = nlp(u'Zero one two three four five six')
|
||||
>>> tokens[0].orth_
|
||||
u'Zero'
|
||||
>>> tokens[-1].orth_
|
||||
u'six'
|
||||
|
||||
.. py:method:: __len__(self)
|
||||
|
||||
Number of tokens
|
||||
|
||||
Internals
|
||||
A Tokens instance stores the annotations in a C-array of `TokenC` structs.
|
||||
Each TokenC struct holds a const pointer to a LexemeC struct, which describes
|
||||
a vocabulary item.
|
||||
.. py:attribute:: sents
|
||||
|
||||
Iterate over sentences in the document.
|
||||
|
||||
The Token objects are built lazily, from this underlying C-data.
|
||||
:returns generator: Sentences
|
||||
|
||||
For faster access, the underlying C data can be accessed from Cython. You
|
||||
can also export the data to a numpy array, via `Tokens.to_array`, if pure Python
|
||||
access is required, and you need slightly better performance. However, this
|
||||
is both slower and has a worse API than Cython access.
|
||||
.. py:attribute:: ents
|
||||
|
||||
Iterate over named entities in the document.
|
||||
|
||||
:returns tuple: Named Entities
|
||||
|
||||
.. py:attribute:: noun_chunks
|
||||
|
||||
:returns generator:
|
||||
|
||||
.. py:method:: to_array(self, list attr_ids)
|
||||
|
||||
Given a list of M attribute IDs, export the tokens to a numpy ndarray
|
||||
of shape N*M, where N is the length of the sentence.
|
||||
|
||||
:param list[int] attr_ids: A list of attribute ID ints.
|
||||
|
||||
:returns feat_array:
|
||||
A feature matrix, with one row per word, and one column per attribute
|
||||
indicated in the input attr_ids.
|
||||
|
||||
.. py:method:: count_by(self, attr_id)
|
||||
|
||||
Produce a dict of {attribute (int): count (ints)} frequencies, keyed
|
||||
by the values of the given attribute ID.
|
||||
|
||||
.. code::
|
||||
|
||||
>>> from spacy.en import English, attrs
|
||||
>>> nlp = English()
|
||||
>>> tokens = nlp(u'apple apple orange banana')
|
||||
>>> tokens.count_by(attrs.ORTH)
|
||||
{12800L: 1, 11880L: 2, 7561L: 1}
|
||||
>>> tokens.to_array([attrs.ORTH])
|
||||
array([[11880],
|
||||
[11880],
|
||||
[ 7561],
|
||||
[12800]])
|
||||
|
||||
.. py:method:: from_array(self, attrs, array)
|
||||
|
||||
.. py:method:: to_bytes(self)
|
||||
|
||||
.. py:method:: from_bytes(self)
|
||||
|
||||
.. py:method:: read_bytes(self)
|
||||
|
||||
.. py:method:: merge(self, int start_idx, int end_idx, unicode tag, unicode lemma, unicode ent_type)
|
||||
|
||||
Merge a multi-word expression into a single token. Currently
|
||||
experimental; API is likely to change.
|
||||
|
|
|
@ -4,29 +4,55 @@ The Span Object
|
|||
|
||||
.. autoclass:: spacy.spans.Span
|
||||
|
||||
:code:`__getitem__`, :code:`__iter__`, :code:`__len__`
|
||||
Sequence API
|
||||
.. py:class:: Span
|
||||
|
||||
:code:`head`
|
||||
Syntactic head, or None
|
||||
|
||||
:code:`left`
|
||||
Tokens to the left of the span
|
||||
.. py:method:: __getitem__
|
||||
|
||||
:code:`rights`
|
||||
Tokens to the left of the span
|
||||
.. py:method:: __iter__
|
||||
|
||||
:code:`orth` / :code:`orth_`
|
||||
Orth string
|
||||
.. py:method:: __len__
|
||||
|
||||
:code:`lemma` / :code:`lemma_`
|
||||
Lemma string
|
||||
.. py:attribute:: root
|
||||
|
||||
:code:`string`
|
||||
String
|
||||
Syntactic head
|
||||
|
||||
:code:`label` / :code:`label_`
|
||||
Label
|
||||
.. py:attribute:: lefts
|
||||
|
||||
:code:`subtree`
|
||||
Lefts + [self] + Rights
|
||||
Tokens that are:
|
||||
|
||||
1. To the left of the span;
|
||||
2. Syntactic children of words within the span
|
||||
|
||||
i.e.
|
||||
|
||||
.. code::
|
||||
|
||||
lefts = [span.doc[i] for i in range(0, span.start) if span.doc[i].head in span]
|
||||
|
||||
.. py:attribute:: rights
|
||||
|
||||
Tokens that are:
|
||||
|
||||
1. To the right of the span;
|
||||
2. Syntactic children of words within the span
|
||||
|
||||
i.e.
|
||||
|
||||
.. code::
|
||||
|
||||
rights = [span.doc[i] for i in range(span.end, len(span.doc)) if span.doc[i].head in span]
|
||||
|
||||
Tokens that are:
|
||||
|
||||
1. To the right of the span;
|
||||
2. Syntactic children of words within the span
|
||||
|
||||
|
||||
.. py:attribute:: string
|
||||
|
||||
.. py:attribute:: lemma / lemma\_
|
||||
|
||||
.. py:attribute:: label / label\_
|
||||
|
||||
.. py:attribute:: subtree
|
||||
|
|
|
@ -11,115 +11,185 @@ token.orth is an integer ID, token.orth\_ is the unicode value.
|
|||
The only exception is the Token.string attribute, which is (unicode)
|
||||
string-typed.
|
||||
|
||||
**String Features**
|
||||
|
||||
:code:`orth` / :code:`orth_`
|
||||
The form of the word with no string normalization or processing, as it
|
||||
appears in the string, without trailing whitespace.
|
||||
.. py:class:: Token
|
||||
|
||||
:code:`lemma` / :code:`lemma_`
|
||||
The "base" of the word, with no inflectional suffixes, e.g. the lemma of
|
||||
"developing" is "develop", the lemma of "geese" is "goose", etc. Note that
|
||||
*derivational* suffixes are not stripped, e.g. the lemma of "instutitions"
|
||||
is "institution", not "institute". Lemmatization is performed using the
|
||||
WordNet data, but extended to also cover closed-class words such as
|
||||
pronouns. By default, the WN lemmatizer returns "hi" as the lemma of "his".
|
||||
We assign pronouns the lemma -PRON-.
|
||||
.. py:method:: __init__(self, Vocab vocab, Doc doc, int offset)
|
||||
|
||||
:code:`lower` / :code:`lower_`
|
||||
The form of the word, but forced to lower-case, i.e. lower = word.orth\_.lower()
|
||||
**String Views**
|
||||
|
||||
:code:`norm` / :code:`norm_`
|
||||
The form of the word, after language-specific normalizations have been
|
||||
applied.
|
||||
.. py:attribute:: orth / orth\_
|
||||
|
||||
:code:`shape` / :code:`shape_`
|
||||
A transform of the word's string, to show orthographic features. The
|
||||
characters a-z are mapped to x, A-Z is mapped to X, 0-9 is mapped to d.
|
||||
After these mappings, sequences of 4 or more of the same character are
|
||||
truncated to length 4. Examples: C3Po --> XdXx, favorite --> xxxx,
|
||||
:) --> :)
|
||||
The form of the word with no string normalization or processing, as it
|
||||
appears in the string, without trailing whitespace.
|
||||
|
||||
:code:`prefix` / :code:`prefix_`
|
||||
A length-N substring from the start of the word. Length may vary by
|
||||
language; currently for English n=1, i.e. prefix = word.orth\_[:1]
|
||||
.. py:attribute:: lemma / lemma\_
|
||||
|
||||
:code:`suffix` / :code:`suffix_`
|
||||
A length-N substring from the end of the word. Length may vary by
|
||||
language; currently for English n=3, i.e. suffix = word.orth\_[-3:]
|
||||
The "base" of the word, with no inflectional suffixes, e.g. the lemma of
|
||||
"developing" is "develop", the lemma of "geese" is "goose", etc. Note that
|
||||
*derivational* suffixes are not stripped, e.g. the lemma of "instutitions"
|
||||
is "institution", not "institute". Lemmatization is performed using the
|
||||
WordNet data, but extended to also cover closed-class words such as
|
||||
pronouns. By default, the WN lemmatizer returns "hi" as the lemma of "his".
|
||||
We assign pronouns the lemma -PRON-.
|
||||
|
||||
:code:`string`
|
||||
The form of the word as it appears in the string, **including trailing
|
||||
whitespace**. This is useful when you need to use linguistic features to
|
||||
add inline mark-up to the string.
|
||||
.. py:attribute:: lower / lower\_
|
||||
|
||||
The form of the word, but forced to lower-case, i.e. lower = word.orth\_.lower()
|
||||
|
||||
**Distributional Features**
|
||||
.. py:attribute:: norm / norm\_
|
||||
|
||||
:code:`prob`
|
||||
The unigram log-probability of the word, estimated from counts from a
|
||||
large corpus, smoothed using Simple Good Turing estimation.
|
||||
The form of the word, after language-specific normalizations have been
|
||||
applied.
|
||||
|
||||
:code:`cluster`
|
||||
The Brown cluster ID of the word. These are often useful features for
|
||||
linear models. If you're using a non-linear model, particularly
|
||||
a neural net or random forest, consider using the real-valued word
|
||||
representation vector, in Token.repvec, instead.
|
||||
.. py:attribute:: shape / shape\_
|
||||
|
||||
:code:`repvec`
|
||||
A "word embedding" representation: a dense real-valued vector that supports
|
||||
similarity queries between words. By default, spaCy currently loads
|
||||
vectors produced by the Levy and Goldberg (2014) dependency-based word2vec
|
||||
model.
|
||||
A transform of the word's string, to show orthographic features. The
|
||||
characters a-z are mapped to x, A-Z is mapped to X, 0-9 is mapped to d.
|
||||
After these mappings, sequences of 4 or more of the same character are
|
||||
truncated to length 4. Examples: C3Po --> XdXx, favorite --> xxxx,
|
||||
:) --> :)
|
||||
|
||||
**Syntactic Features**
|
||||
.. py:attribute:: prefix / prefix\_
|
||||
|
||||
:code:`tag`
|
||||
A morphosyntactic tag, e.g. NN, VBZ, DT, etc. These tags are
|
||||
language/corpus specific, and typically describe part-of-speech and some
|
||||
amount of morphological information. For instance, in the Penn Treebank
|
||||
tag set, VBZ is assigned to a present-tense singular verb.
|
||||
A length-N substring from the start of the word. Length may vary by
|
||||
language; currently for English n=1, i.e. prefix = word.orth\_[:1]
|
||||
|
||||
:code:`pos`
|
||||
A part-of-speech tag, from the Google Universal Tag Set, e.g. NOUN, VERB,
|
||||
ADV. Constants for the 17 tag values are provided in spacy.parts\_of\_speech.
|
||||
.. py:attribute:: suffix / suffix\_
|
||||
|
||||
:code:`dep`
|
||||
The type of syntactic dependency relation between the word and its
|
||||
syntactic head.
|
||||
A length-N substring from the end of the word. Length may vary by
|
||||
language; currently for English n=3, i.e. suffix = word.orth\_[-3:]
|
||||
|
||||
:code:`n_lefts`
|
||||
The number of immediate syntactic children preceding the word in the
|
||||
string.
|
||||
.. py:attribute:: lex_id
|
||||
|
||||
:code:`n_rights`
|
||||
The number of immediate syntactic children following the word in the
|
||||
string.
|
||||
**Alignment and Output**
|
||||
|
||||
**Navigating the Dependency Tree**
|
||||
.. py:attribute:: idx
|
||||
|
||||
:code:`head`
|
||||
The Token that is the immediate syntactic head of the word. If the word is
|
||||
the root of the dependency tree, the same word is returned.
|
||||
.. py:method:: __len__(self)
|
||||
|
||||
:code:`lefts`
|
||||
An iterator for the immediate leftward syntactic children of the word.
|
||||
.. py:method:: __unicode__(self)
|
||||
|
||||
:code:`rights`
|
||||
An iterator for the immediate rightward syntactic children of the word.
|
||||
.. py:method:: __str__(self)
|
||||
|
||||
:code:`children`
|
||||
An iterator that yields from lefts, and then yields from rights.
|
||||
.. py:attribute:: string
|
||||
|
||||
:code:`subtree`
|
||||
An iterator for the part of the sentence syntactically governed by the
|
||||
word, including the word itself.
|
||||
The form of the word as it appears in the string, **including trailing
|
||||
whitespace**. This is useful when you need to use linguistic features to
|
||||
add inline mark-up to the string.
|
||||
|
||||
.. py:method:: nbor(self, int i=1)
|
||||
|
||||
**Named Entities**
|
||||
**Distributional Features**
|
||||
|
||||
:code:`ent_type`
|
||||
If the token is part of an entity, its entity type
|
||||
.. py:attribute:: repvec
|
||||
|
||||
:code:`ent_iob`
|
||||
The IOB (inside, outside, begin) entity recognition tag for the token
|
||||
A "word embedding" representation: a dense real-valued vector that supports
|
||||
similarity queries between words. By default, spaCy currently loads
|
||||
vectors produced by the Levy and Goldberg (2014) dependency-based word2vec
|
||||
model.
|
||||
|
||||
.. py:attribute:: cluster
|
||||
|
||||
The Brown cluster ID of the word. These are often useful features for
|
||||
linear models. If you're using a non-linear model, particularly
|
||||
a neural net or random forest, consider using the real-valued word
|
||||
representation vector, in Token.repvec, instead.
|
||||
|
||||
.. py:attribute:: prob
|
||||
|
||||
The unigram log-probability of the word, estimated from counts from a
|
||||
large corpus, smoothed using Simple Good Turing estimation.
|
||||
|
||||
**Navigating the Dependency Tree**
|
||||
|
||||
.. py:attribute:: pos / pos\_
|
||||
|
||||
A part-of-speech tag, from the Google Universal Tag Set, e.g. NOUN, VERB,
|
||||
ADV. Constants for the 17 tag values are provided in spacy.parts\_of\_speech.
|
||||
|
||||
.. py:attribute:: tag / tag\_
|
||||
|
||||
A morphosyntactic tag, e.g. NN, VBZ, DT, etc. These tags are
|
||||
language/corpus specific, and typically describe part-of-speech and some
|
||||
amount of morphological information. For instance, in the Penn Treebank
|
||||
tag set, VBZ is assigned to a present-tense singular verb.
|
||||
|
||||
.. py:attribute:: dep / dep\_
|
||||
|
||||
The type of syntactic dependency relation between the word and its
|
||||
syntactic head.
|
||||
|
||||
.. py:attribute:: head
|
||||
|
||||
The Token that is the immediate syntactic head of the word. If the word is
|
||||
the root of the dependency tree, the same word is returned.
|
||||
|
||||
.. py:attribute:: lefts
|
||||
|
||||
An iterator for the immediate leftward syntactic children of the word.
|
||||
|
||||
.. py:attribute:: rights
|
||||
|
||||
An iterator for the immediate rightward syntactic children of the word.
|
||||
|
||||
.. py:attribute:: n_lefts
|
||||
|
||||
The number of immediate syntactic children preceding the word in the
|
||||
string.
|
||||
|
||||
.. py:attribute:: n_rights
|
||||
|
||||
The number of immediate syntactic children following the word in the
|
||||
string.
|
||||
|
||||
.. py:attribute:: children
|
||||
|
||||
An iterator that yields from lefts, and then yields from rights.
|
||||
|
||||
.. py:attribute:: subtree
|
||||
|
||||
An iterator for the part of the sentence syntactically governed by the
|
||||
word, including the word itself.
|
||||
|
||||
.. py:attribute:: left_edge
|
||||
|
||||
.. py:attribute:: right_edge
|
||||
|
||||
.. py:attribute:: conjuncts
|
||||
|
||||
**Named Entities**
|
||||
|
||||
.. py:attribute:: ent_type
|
||||
|
||||
If the token is part of an entity, its entity type
|
||||
|
||||
.. py:attribute:: ent_iob
|
||||
|
||||
The IOB (inside, outside, begin) entity recognition tag for the token
|
||||
|
||||
**Lexeme Flags**
|
||||
|
||||
.. py:method:: check_flag(self, attr_id_t flag_id)
|
||||
|
||||
.. py:attribute:: is_oov
|
||||
|
||||
.. py:attribute:: is_alpha
|
||||
|
||||
.. py:attribute:: is_ascii
|
||||
|
||||
.. py:attribute:: is_digit
|
||||
|
||||
.. py:attribute:: is_lower
|
||||
|
||||
.. py:attribute:: is_title
|
||||
|
||||
.. py:attribute:: is_punct
|
||||
|
||||
.. py:attribute:: is_space
|
||||
|
||||
.. py:attribute:: like_url
|
||||
|
||||
.. py:attribute:: like_num
|
||||
|
||||
.. py:attribute:: like_email
|
||||
|
|
Loading…
Reference in New Issue
Block a user