mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Tidy up tests and docs
This commit is contained in:
parent
a5f6ab4943
commit
67fbcb3da5
|
@ -224,7 +224,7 @@ for that particular code. Here's an example:
|
|||
```python
|
||||
# fmt: off
|
||||
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
|
||||
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
|
||||
heads = [1, 1, 1, 1, 3, 4, 1, 6, 11, 11, 11, 11, 14, 14, 11, 16, 17, 14, 11]
|
||||
deps = ["nsubj", "ROOT", "advmod", "prep", "pcomp", "dobj", "punct", "",
|
||||
"nsubjpass", "aux", "auxpass", "ROOT", "nsubj", "aux", "ccomp",
|
||||
"poss", "nsubj", "ccomp", "punct"]
|
||||
|
@ -421,7 +421,7 @@ Tests that require the model to be loaded should be marked with
|
|||
`@pytest.mark.models`. Loading the models is expensive and not necessary if
|
||||
you're not actually testing the model performance. If all you need is a `Doc`
|
||||
object with annotations like heads, POS tags or the dependency parse, you can
|
||||
use the `get_doc()` utility function to construct it manually.
|
||||
use the `Doc` constructor to construct it manually.
|
||||
|
||||
📖 **For more guidelines and information on how to add tests, check out the [tests README](spacy/tests/README.md).**
|
||||
|
||||
|
|
|
@ -455,7 +455,7 @@ class Errors:
|
|||
"{obj}.{attr}\nAttribute '{attr}' does not exist on {obj}.")
|
||||
E186 = ("'{tok_a}' and '{tok_b}' are different texts.")
|
||||
E187 = ("Only unicode strings are supported as labels.")
|
||||
E189 = ("Each argument to `get_doc` should be of equal length.")
|
||||
E189 = ("Each argument to Doc.__init__ should be of equal length.")
|
||||
E190 = ("Token head out of range in `Doc.from_array()` for token index "
|
||||
"'{index}' with value '{value}' (equivalent to relative head "
|
||||
"index: '{rel_head_index}'). The head indices should be relative "
|
||||
|
|
|
@ -17,7 +17,6 @@ Tests for spaCy modules and classes live in their own directories of the same na
|
|||
5. [Helpers and utilities](#helpers-and-utilities)
|
||||
6. [Contributing to the tests](#contributing-to-the-tests)
|
||||
|
||||
|
||||
## Running the tests
|
||||
|
||||
To show print statements, run the tests with `py.test -s`. To abort after the
|
||||
|
@ -41,17 +40,16 @@ py.test spacy/tests/tokenizer/test_exceptions.py::test_tokenizer_handles_emoji #
|
|||
|
||||
To keep the behaviour of the tests consistent and predictable, we try to follow a few basic conventions:
|
||||
|
||||
* **Test names** should follow a pattern of `test_[module]_[tested behaviour]`. For example: `test_tokenizer_keeps_email` or `test_spans_override_sentiment`.
|
||||
* If you're testing for a bug reported in a specific issue, always create a **regression test**. Regression tests should be named `test_issue[ISSUE NUMBER]` and live in the [`regression`](regression) directory.
|
||||
* Only use `@pytest.mark.xfail` for tests that **should pass, but currently fail**. To test for desired negative behaviour, use `assert not` in your test.
|
||||
* Very **extensive tests** that take a long time to run should be marked with `@pytest.mark.slow`. If your slow test is testing important behaviour, consider adding an additional simpler version.
|
||||
* If tests require **loading the models**, they should be added to the [`spacy-models`](https://github.com/explosion/spacy-models) tests.
|
||||
* Before requiring the models, always make sure there is no other way to test the particular behaviour. In a lot of cases, it's sufficient to simply create a `Doc` object manually. See the section on [helpers and utility functions](#helpers-and-utilities) for more info on this.
|
||||
* **Avoid unnecessary imports.** There should never be a need to explicitly import spaCy at the top of a file, and many components are available as [fixtures](#fixtures). You should also avoid wildcard imports (`from module import *`).
|
||||
* If you're importing from spaCy, **always use absolute imports**. For example: `from spacy.language import Language`.
|
||||
* Don't forget the **unicode declarations** at the top of each file. This way, unicode strings won't have to be prefixed with `u`.
|
||||
* Try to keep the tests **readable and concise**. Use clear and descriptive variable names (`doc`, `tokens` and `text` are great), keep it short and only test for one behaviour at a time.
|
||||
|
||||
- **Test names** should follow a pattern of `test_[module]_[tested behaviour]`. For example: `test_tokenizer_keeps_email` or `test_spans_override_sentiment`.
|
||||
- If you're testing for a bug reported in a specific issue, always create a **regression test**. Regression tests should be named `test_issue[ISSUE NUMBER]` and live in the [`regression`](regression) directory.
|
||||
- Only use `@pytest.mark.xfail` for tests that **should pass, but currently fail**. To test for desired negative behaviour, use `assert not` in your test.
|
||||
- Very **extensive tests** that take a long time to run should be marked with `@pytest.mark.slow`. If your slow test is testing important behaviour, consider adding an additional simpler version.
|
||||
- If tests require **loading the models**, they should be added to the [`spacy-models`](https://github.com/explosion/spacy-models) tests.
|
||||
- Before requiring the models, always make sure there is no other way to test the particular behaviour. In a lot of cases, it's sufficient to simply create a `Doc` object manually. See the section on [helpers and utility functions](#helpers-and-utilities) for more info on this.
|
||||
- **Avoid unnecessary imports.** There should never be a need to explicitly import spaCy at the top of a file, and many components are available as [fixtures](#fixtures). You should also avoid wildcard imports (`from module import *`).
|
||||
- If you're importing from spaCy, **always use absolute imports**. For example: `from spacy.language import Language`.
|
||||
- Don't forget the **unicode declarations** at the top of each file. This way, unicode strings won't have to be prefixed with `u`.
|
||||
- Try to keep the tests **readable and concise**. Use clear and descriptive variable names (`doc`, `tokens` and `text` are great), keep it short and only test for one behaviour at a time.
|
||||
|
||||
## Parameters
|
||||
|
||||
|
@ -64,7 +62,7 @@ def test_tokenizer_keep_urls(tokenizer, text):
|
|||
assert len(tokens) == 1
|
||||
```
|
||||
|
||||
This will run the test once for each `text` value. Even if you're only testing one example, it's usually best to specify it as a parameter. This will later make it easier for others to quickly add additional test cases without having to modify the test.
|
||||
This will run the test once for each `text` value. Even if you're only testing one example, it's usually best to specify it as a parameter. This will later make it easier for others to quickly add additional test cases without having to modify the test.
|
||||
|
||||
You can also specify parameters as tuples to test with multiple values per test:
|
||||
|
||||
|
@ -81,18 +79,17 @@ To test for combinations of parameters, you can add several `parametrize` marker
|
|||
|
||||
This will run the test with all combinations of the two parameters `text` and `punct`. **Use this feature sparingly**, though, as it can easily cause unneccessary or undesired test bloat.
|
||||
|
||||
|
||||
## Fixtures
|
||||
|
||||
Fixtures to create instances of spaCy objects and other components should only be defined once in the global [`conftest.py`](conftest.py). We avoid having per-directory conftest files, as this can easily lead to confusion.
|
||||
|
||||
These are the main fixtures that are currently available:
|
||||
|
||||
| Fixture | Description |
|
||||
| --- | --- |
|
||||
| `tokenizer` | Basic, language-independent tokenizer. Identical to the `xx` language class. |
|
||||
| `en_tokenizer`, `de_tokenizer`, ... | Creates an English, German etc. tokenizer. |
|
||||
| `en_vocab` | Creates an instance of the English `Vocab`. |
|
||||
| Fixture | Description |
|
||||
| ----------------------------------- | ---------------------------------------------------------------------------- |
|
||||
| `tokenizer` | Basic, language-independent tokenizer. Identical to the `xx` language class. |
|
||||
| `en_tokenizer`, `de_tokenizer`, ... | Creates an English, German etc. tokenizer. |
|
||||
| `en_vocab` | Creates an instance of the English `Vocab`. |
|
||||
|
||||
The fixtures can be used in all tests by simply setting them as an argument, like this:
|
||||
|
||||
|
@ -107,59 +104,32 @@ If all tests in a file require a specific configuration, or use the same complex
|
|||
|
||||
Our new test setup comes with a few handy utility functions that can be imported from [`util.py`](util.py).
|
||||
|
||||
### Constructing a `Doc` object manually with
|
||||
|
||||
### Constructing a `Doc` object manually with `get_doc()`
|
||||
|
||||
Loading the models is expensive and not necessary if you're not actually testing the model performance. If all you need ia a `Doc` object with annotations like heads, POS tags or the dependency parse, you can use `get_doc()` to construct it manually.
|
||||
Loading the models is expensive and not necessary if you're not actually testing the model performance. If all you need ia a `Doc` object with annotations like heads, POS tags or the dependency parse, you can construct it manually.
|
||||
|
||||
```python
|
||||
def test_doc_token_api_strings(en_tokenizer):
|
||||
def test_doc_token_api_strings(en_vocab):
|
||||
text = "Give it back! He pleaded."
|
||||
pos = ['VERB', 'PRON', 'PART', 'PUNCT', 'PRON', 'VERB', 'PUNCT']
|
||||
heads = [0, -1, -2, -3, 1, 0, -1]
|
||||
heads = [0, 0, 0, 0, 5, 5, 5]
|
||||
deps = ['ROOT', 'dobj', 'prt', 'punct', 'nsubj', 'ROOT', 'punct']
|
||||
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, [t.text for t in tokens], pos=pos, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, [t.text for t in tokens], pos=pos, heads=heads, deps=deps)
|
||||
assert doc[0].text == 'Give'
|
||||
assert doc[0].lower_ == 'give'
|
||||
assert doc[0].pos_ == 'VERB'
|
||||
assert doc[0].dep_ == 'ROOT'
|
||||
```
|
||||
|
||||
You can construct a `Doc` with the following arguments:
|
||||
|
||||
| Argument | Description |
|
||||
| --- | --- |
|
||||
| `vocab` | `Vocab` instance to use. If you're tokenizing before creating a `Doc`, make sure to use the tokenizer's vocab. Otherwise, you can also use the `en_vocab` fixture. **(required)** |
|
||||
| `words` | List of words, for example `[t.text for t in tokens]`. **(required)** |
|
||||
| `heads` | List of heads as integers. |
|
||||
| `pos` | List of POS tags as text values. |
|
||||
| `tag` | List of tag names as text values. |
|
||||
| `dep` | List of dependencies as text values. |
|
||||
| `ents` | List of entity tuples with `start`, `end`, `label` (for example `(0, 2, 'PERSON')`). The `label` will be looked up in `vocab.strings[label]`. |
|
||||
|
||||
Here's how to quickly get these values from within spaCy:
|
||||
|
||||
```python
|
||||
doc = nlp(u'Some text here')
|
||||
print([token.head.i-token.i for token in doc])
|
||||
print([token.tag_ for token in doc])
|
||||
print([token.pos_ for token in doc])
|
||||
print([token.dep_ for token in doc])
|
||||
print([(ent.start, ent.end, ent.label_) for ent in doc.ents])
|
||||
```
|
||||
|
||||
**Note:** There's currently no way of setting the serializer data for the parser without loading the models. If this is relevant to your test, constructing the `Doc` via `get_doc()` won't work.
|
||||
|
||||
### Other utilities
|
||||
|
||||
| Name | Description |
|
||||
| --- | --- |
|
||||
| `apply_transition_sequence(parser, doc, sequence)` | Perform a series of pre-specified transitions, to put the parser in a desired state. |
|
||||
| `add_vecs_to_vocab(vocab, vectors)` | Add list of vector tuples (`[("text", [1, 2, 3])]`) to given vocab. All vectors need to have the same length. |
|
||||
| `get_cosine(vec1, vec2)` | Get cosine for two given vectors. |
|
||||
| `assert_docs_equal(doc1, doc2)` | Compare two `Doc` objects and `assert` that they're equal. Tests for tokens, tags, dependencies and entities. |
|
||||
| Name | Description |
|
||||
| -------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
| `apply_transition_sequence(parser, doc, sequence)` | Perform a series of pre-specified transitions, to put the parser in a desired state. |
|
||||
| `add_vecs_to_vocab(vocab, vectors)` | Add list of vector tuples (`[("text", [1, 2, 3])]`) to given vocab. All vectors need to have the same length. |
|
||||
| `get_cosine(vec1, vec2)` | Get cosine for two given vectors. |
|
||||
| `assert_docs_equal(doc1, doc2)` | Compare two `Doc` objects and `assert` that they're equal. Tests for tokens, tags, dependencies and entities. |
|
||||
|
||||
## Contributing to the tests
|
||||
|
||||
|
|
|
@ -59,6 +59,11 @@ def de_tokenizer():
|
|||
return get_lang_class("de")().tokenizer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def de_vocab():
|
||||
return get_lang_class("de")().vocab
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def el_tokenizer():
|
||||
return get_lang_class("el")().tokenizer
|
||||
|
|
|
@ -1,12 +1,10 @@
|
|||
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
||||
from spacy.training import Example
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
from spacy.tokens import Span, Doc
|
||||
from spacy import registry
|
||||
import pytest
|
||||
|
||||
from ..util import get_doc
|
||||
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
||||
|
||||
|
||||
def _ner_example(ner):
|
||||
doc = Doc(
|
||||
|
@ -19,7 +17,7 @@ def _ner_example(ner):
|
|||
|
||||
def test_doc_add_entities_set_ents_iob(en_vocab):
|
||||
text = ["This", "is", "a", "lion"]
|
||||
doc = get_doc(en_vocab, text)
|
||||
doc = Doc(en_vocab, words=text)
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
|
@ -41,7 +39,7 @@ def test_doc_add_entities_set_ents_iob(en_vocab):
|
|||
def test_ents_reset(en_vocab):
|
||||
"""Ensure that resetting doc.ents does not change anything"""
|
||||
text = ["This", "is", "a", "lion"]
|
||||
doc = get_doc(en_vocab, text)
|
||||
doc = Doc(en_vocab, words=text)
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
|
@ -59,7 +57,7 @@ def test_ents_reset(en_vocab):
|
|||
|
||||
def test_add_overlapping_entities(en_vocab):
|
||||
text = ["Louisiana", "Office", "of", "Conservation"]
|
||||
doc = get_doc(en_vocab, text)
|
||||
doc = Doc(en_vocab, words=text)
|
||||
entity = Span(doc, 0, 4, label=391)
|
||||
doc.ents = [entity]
|
||||
|
||||
|
|
|
@ -2,8 +2,6 @@ import pytest
|
|||
from spacy.tokens import Doc
|
||||
from spacy.attrs import ORTH, SHAPE, POS, DEP, MORPH
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_doc_array_attr_of_token(en_vocab):
|
||||
doc = Doc(en_vocab, words=["An", "example", "sentence"])
|
||||
|
@ -35,7 +33,7 @@ def test_doc_scalar_attr_of_token(en_vocab):
|
|||
def test_doc_array_tag(en_vocab):
|
||||
words = ["A", "nice", "sentence", "."]
|
||||
pos = ["DET", "ADJ", "NOUN", "PUNCT"]
|
||||
doc = get_doc(en_vocab, words=words, pos=pos)
|
||||
doc = Doc(en_vocab, words=words, pos=pos)
|
||||
assert doc[0].pos != doc[1].pos != doc[2].pos != doc[3].pos
|
||||
feats_array = doc.to_array((ORTH, POS))
|
||||
assert feats_array[0][1] == doc[0].pos
|
||||
|
@ -47,7 +45,7 @@ def test_doc_array_tag(en_vocab):
|
|||
def test_doc_array_morph(en_vocab):
|
||||
words = ["Eat", "blue", "ham"]
|
||||
morph = ["Feat=V", "Feat=J", "Feat=N"]
|
||||
doc = get_doc(en_vocab, words=words, morphs=morph)
|
||||
doc = Doc(en_vocab, words=words, morphs=morph)
|
||||
assert morph[0] == doc[0].morph_
|
||||
assert morph[1] == doc[1].morph_
|
||||
assert morph[2] == doc[2].morph_
|
||||
|
@ -61,7 +59,7 @@ def test_doc_array_morph(en_vocab):
|
|||
def test_doc_array_dep(en_vocab):
|
||||
words = ["A", "nice", "sentence", "."]
|
||||
deps = ["det", "amod", "ROOT", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, deps=deps)
|
||||
feats_array = doc.to_array((ORTH, DEP))
|
||||
assert feats_array[0][1] == doc[0].dep
|
||||
assert feats_array[1][1] == doc[1].dep
|
||||
|
|
|
@ -6,25 +6,20 @@ from spacy.lexeme import Lexeme
|
|||
from spacy.lang.en import English
|
||||
from spacy.attrs import ENT_TYPE, ENT_IOB, SENT_START, HEAD, DEP, MORPH
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_doc_api_init(en_vocab):
|
||||
words = ["a", "b", "c", "d"]
|
||||
heads = [0, 0, 2, 2]
|
||||
# set sent_start by sent_starts
|
||||
doc = Doc(
|
||||
en_vocab, words=["a", "b", "c", "d"], sent_starts=[True, False, True, False]
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, sent_starts=[True, False, True, False])
|
||||
assert [t.is_sent_start for t in doc] == [True, False, True, False]
|
||||
|
||||
# set sent_start by heads
|
||||
doc = Doc(
|
||||
en_vocab, words=["a", "b", "c", "d"], heads=[0, 0, 2, 2], deps=["dep"] * 4
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * 4)
|
||||
assert [t.is_sent_start for t in doc] == [True, False, True, False]
|
||||
|
||||
# heads override sent_starts
|
||||
doc = Doc(
|
||||
en_vocab, words=["a", "b", "c", "d"], sent_starts=[True] * 4, heads=[0, 0, 2, 2], deps=["dep"] * 4
|
||||
en_vocab, words=words, sent_starts=[True] * 4, heads=heads, deps=["dep"] * 4,
|
||||
)
|
||||
assert [t.is_sent_start for t in doc] == [True, False, True, False]
|
||||
|
||||
|
@ -178,7 +173,7 @@ def test_doc_api_runtime_error(en_tokenizer):
|
|||
"", "nummod", "nsubj", "prep", "det", "amod", "pobj", "aux", "neg", "ccomp", "amod", "dobj"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], deps=deps)
|
||||
nps = []
|
||||
for np in doc.noun_chunks:
|
||||
while len(np) > 1 and np[0].dep_ not in ("advmod", "amod", "compound"):
|
||||
|
@ -195,17 +190,19 @@ def test_doc_api_runtime_error(en_tokenizer):
|
|||
retokenizer.merge(np, attrs=attrs)
|
||||
|
||||
|
||||
def test_doc_api_right_edge(en_tokenizer):
|
||||
def test_doc_api_right_edge(en_vocab):
|
||||
"""Test for bug occurring from Unshift action, causing incorrect right edge"""
|
||||
# fmt: off
|
||||
text = "I have proposed to myself, for the sake of such as live under the government of the Romans, to translate those books into the Greek tongue."
|
||||
heads = [2, 1, 0, -1, -1, -3, 15, 1, -2, -1, 1, -3, -1, -1, 1, -2, -1, 1,
|
||||
-2, -7, 1, -19, 1, -2, -3, 2, 1, -3, -26]
|
||||
words = [
|
||||
"I", "have", "proposed", "to", "myself", ",", "for", "the", "sake",
|
||||
"of", "such", "as", "live", "under", "the", "government", "of", "the",
|
||||
"Romans", ",", "to", "translate", "those", "books", "into", "the",
|
||||
"Greek", "tongue", "."
|
||||
]
|
||||
heads = [2, 2, 2, 2, 3, 2, 21, 8, 6, 8, 11, 8, 11, 12, 15, 13, 15, 18, 16, 12, 21, 2, 23, 21, 21, 27, 27, 24, 2]
|
||||
deps = ["dep"] * len(heads)
|
||||
# fmt: on
|
||||
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert doc[6].text == "for"
|
||||
subtree = [w.text for w in doc[6].subtree]
|
||||
# fmt: off
|
||||
|
@ -233,16 +230,16 @@ def test_doc_api_similarity_match():
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence,heads,lca_matrix",
|
||||
"words,heads,lca_matrix",
|
||||
[
|
||||
(
|
||||
"the lazy dog slept",
|
||||
[2, 1, 1, 0],
|
||||
["the", "lazy", "dog", "slept"],
|
||||
[2, 2, 3, 3],
|
||||
numpy.array([[0, 2, 2, 3], [2, 1, 2, 3], [2, 2, 2, 3], [3, 3, 3, 3]]),
|
||||
),
|
||||
(
|
||||
"The lazy dog slept. The quick fox jumped",
|
||||
[2, 1, 1, 0, -1, 2, 1, 1, 0],
|
||||
["The", "lazy", "dog", "slept", ".", "The", "quick", "fox", "jumped"],
|
||||
[2, 2, 3, 3, 3, 7, 7, 8, 8],
|
||||
numpy.array(
|
||||
[
|
||||
[0, 2, 2, 3, 3, -1, -1, -1, -1],
|
||||
|
@ -259,11 +256,8 @@ def test_doc_api_similarity_match():
|
|||
),
|
||||
],
|
||||
)
|
||||
def test_lowest_common_ancestor(en_tokenizer, sentence, heads, lca_matrix):
|
||||
tokens = en_tokenizer(sentence)
|
||||
doc = get_doc(
|
||||
tokens.vocab, [t.text for t in tokens], heads=heads, deps=["dep"] * len(heads)
|
||||
)
|
||||
def test_lowest_common_ancestor(en_vocab, words, heads, lca_matrix):
|
||||
doc = Doc(en_vocab, words, heads=heads, deps=["dep"] * len(heads))
|
||||
lca = doc.get_lca_matrix()
|
||||
assert (lca == lca_matrix).all()
|
||||
assert lca[1, 1] == 1
|
||||
|
@ -287,26 +281,23 @@ def test_doc_is_nered(en_vocab):
|
|||
|
||||
|
||||
def test_doc_from_array_sent_starts(en_vocab):
|
||||
words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
|
||||
heads = [0, -1, -2, -3, -4, -5, 0, -1, -2, -3]
|
||||
# fmt: off
|
||||
words = ["I", "live", "in", "New", "York", ".", "I", "like", "cats", "."]
|
||||
heads = [0, 0, 0, 0, 0, 0, 6, 6, 6, 6]
|
||||
deps = ["ROOT", "dep", "dep", "dep", "dep", "dep", "ROOT", "dep", "dep", "dep"]
|
||||
# fmt: on
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
# HEAD overrides SENT_START without warning
|
||||
attrs = [SENT_START, HEAD]
|
||||
arr = doc.to_array(attrs)
|
||||
new_doc = Doc(en_vocab, words=words)
|
||||
new_doc.from_array(attrs, arr)
|
||||
|
||||
# no warning using default attrs
|
||||
attrs = doc._get_array_attrs()
|
||||
arr = doc.to_array(attrs)
|
||||
with pytest.warns(None) as record:
|
||||
new_doc.from_array(attrs, arr)
|
||||
assert len(record) == 0
|
||||
|
||||
# only SENT_START uses SENT_START
|
||||
attrs = [SENT_START]
|
||||
arr = doc.to_array(attrs)
|
||||
|
@ -314,7 +305,6 @@ def test_doc_from_array_sent_starts(en_vocab):
|
|||
new_doc.from_array(attrs, arr)
|
||||
assert [t.is_sent_start for t in doc] == [t.is_sent_start for t in new_doc]
|
||||
assert not new_doc.has_annotation("DEP")
|
||||
|
||||
# only HEAD uses HEAD
|
||||
attrs = [HEAD, DEP]
|
||||
arr = doc.to_array(attrs)
|
||||
|
@ -325,19 +315,17 @@ def test_doc_from_array_sent_starts(en_vocab):
|
|||
|
||||
|
||||
def test_doc_from_array_morph(en_vocab):
|
||||
words = ["I", "live", "in", "New", "York", "."]
|
||||
# fmt: off
|
||||
words = ["I", "live", "in", "New", "York", "."]
|
||||
morphs = ["Feat1=A", "Feat1=B", "Feat1=C", "Feat1=A|Feat2=D", "Feat2=E", "Feat3=F"]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
for i, morph in enumerate(morphs):
|
||||
doc[i].morph_ = morph
|
||||
|
||||
attrs = [MORPH]
|
||||
arr = doc.to_array(attrs)
|
||||
new_doc = Doc(en_vocab, words=words)
|
||||
new_doc.from_array(attrs, arr)
|
||||
|
||||
assert [t.morph_ for t in new_doc] == morphs
|
||||
assert [t.morph_ for t in doc] == [t.morph_ for t in new_doc]
|
||||
|
||||
|
@ -349,15 +337,9 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
|
|||
en_docs = [en_tokenizer(text) for text in en_texts]
|
||||
docs_idx = en_texts[0].index("docs")
|
||||
de_doc = de_tokenizer(de_text)
|
||||
en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = (
|
||||
True,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
expected = (True, None, None, None)
|
||||
en_docs[0].user_data[("._.", "is_ambiguous", docs_idx, None)] = expected
|
||||
assert Doc.from_docs([]) is None
|
||||
|
||||
assert de_doc is not Doc.from_docs([de_doc])
|
||||
assert str(de_doc) == str(Doc.from_docs([de_doc]))
|
||||
|
||||
|
|
|
@ -3,8 +3,6 @@ from spacy.attrs import LEMMA
|
|||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc, Token
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_doc_retokenize_merge(en_tokenizer):
|
||||
text = "WKRO played songs by the beach boys all night"
|
||||
|
@ -88,9 +86,9 @@ def test_doc_retokenize_lex_attrs(en_tokenizer):
|
|||
|
||||
def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
|
||||
text = "Los Angeles start."
|
||||
heads = [1, 1, 0, -1]
|
||||
heads = [1, 2, 2, 2]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
assert len(doc) == 4
|
||||
assert doc[0].head.text == "Angeles"
|
||||
assert doc[1].head.text == "start"
|
||||
|
@ -103,17 +101,12 @@ def test_doc_retokenize_spans_merge_tokens(en_tokenizer):
|
|||
assert doc[0].ent_type_ == "GPE"
|
||||
|
||||
|
||||
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
|
||||
text = "The players start."
|
||||
heads = [1, 1, 0, -1]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
tags=["DT", "NN", "VBZ", "."],
|
||||
pos=["DET", "NOUN", "VERB", "PUNCT"],
|
||||
heads=heads,
|
||||
)
|
||||
def test_doc_retokenize_spans_merge_tokens_default_attrs(en_vocab):
|
||||
words = ["The", "players", "start", "."]
|
||||
heads = [1, 2, 2, 2]
|
||||
tags = ["DT", "NN", "VBZ", "."]
|
||||
pos = ["DET", "NOUN", "VERB", "PUNCT"]
|
||||
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
|
||||
assert len(doc) == 4
|
||||
assert doc[0].text == "The"
|
||||
assert doc[0].tag_ == "DT"
|
||||
|
@ -124,13 +117,7 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
|
|||
assert doc[0].text == "The players"
|
||||
assert doc[0].tag_ == "NN"
|
||||
assert doc[0].pos_ == "NOUN"
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
tags=["DT", "NN", "VBZ", "."],
|
||||
pos=["DET", "NOUN", "VERB", "PUNCT"],
|
||||
heads=heads,
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, heads=heads)
|
||||
assert len(doc) == 4
|
||||
assert doc[0].text == "The"
|
||||
assert doc[0].tag_ == "DT"
|
||||
|
@ -147,11 +134,10 @@ def test_doc_retokenize_spans_merge_tokens_default_attrs(en_tokenizer):
|
|||
assert doc[1].pos_ == "VERB"
|
||||
|
||||
|
||||
def test_doc_retokenize_spans_merge_heads(en_tokenizer):
|
||||
text = "I found a pilates class near work."
|
||||
heads = [1, 0, 2, 1, -3, -1, -1, -6]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
def test_doc_retokenize_spans_merge_heads(en_vocab):
|
||||
words = ["I", "found", "a", "pilates", "class", "near", "work", "."]
|
||||
heads = [1, 1, 4, 6, 1, 4, 5, 1]
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
assert len(doc) == 8
|
||||
with doc.retokenize() as retokenizer:
|
||||
attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
|
||||
|
@ -182,9 +168,9 @@ def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer):
|
|||
|
||||
def test_doc_retokenize_span_np_merges(en_tokenizer):
|
||||
text = "displaCy is a parse tool built with Javascript"
|
||||
heads = [1, 0, 2, 1, -3, -1, -1, -1]
|
||||
heads = [1, 1, 4, 4, 1, 4, 5, 6]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
assert doc[4].head.i == 1
|
||||
with doc.retokenize() as retokenizer:
|
||||
attrs = {"tag": "NP", "lemma": "tool", "ent_type": "O"}
|
||||
|
@ -192,18 +178,18 @@ def test_doc_retokenize_span_np_merges(en_tokenizer):
|
|||
assert doc[2].head.i == 1
|
||||
|
||||
text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
|
||||
heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
|
||||
heads = [1, 1, 10, 7, 3, 3, 7, 10, 9, 10, 1, 10, 11, 12, 13, 13, 1]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
with doc.retokenize() as retokenizer:
|
||||
for ent in doc.ents:
|
||||
attrs = {"tag": ent.label_, "lemma": ent.lemma_, "ent_type": ent.label_}
|
||||
retokenizer.merge(ent, attrs=attrs)
|
||||
|
||||
text = "One test with entities like New York City so the ents list is not void"
|
||||
heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
|
||||
heads = [1, 1, 1, 2, 3, 6, 7, 4, 12, 11, 11, 12, 1, 12, 12]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
with doc.retokenize() as retokenizer:
|
||||
for ent in doc.ents:
|
||||
retokenizer.merge(ent)
|
||||
|
@ -212,12 +198,12 @@ def test_doc_retokenize_span_np_merges(en_tokenizer):
|
|||
def test_doc_retokenize_spans_entity_merge(en_tokenizer):
|
||||
# fmt: off
|
||||
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
|
||||
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
|
||||
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12, 2, 15]
|
||||
tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
|
||||
ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")]
|
||||
ents = [("PERSON", 0, 2), ("GPE", 10, 11), ("PERSON", 13, 15)]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
|
||||
)
|
||||
assert len(doc) == 17
|
||||
|
@ -282,13 +268,13 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
|
|||
|
||||
# if there is a parse, span.root provides default values
|
||||
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
|
||||
heads = [0, -1, 1, -3, -4, -5, -1, -7, -8]
|
||||
ents = [(3, 5, "ent-de"), (5, 7, "ent-fg")]
|
||||
heads = [0, 0, 3, 0, 0, 0, 5, 0, 0]
|
||||
ents = [("ent-de", 3, 5), ("ent-fg", 5, 7)]
|
||||
deps = ["dep"] * len(words)
|
||||
en_vocab.strings.add("ent-de")
|
||||
en_vocab.strings.add("ent-fg")
|
||||
en_vocab.strings.add("dep")
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
||||
assert doc[2:4].root == doc[3] # root of 'c d' is d
|
||||
assert doc[4:6].root == doc[4] # root is 'e f' is e
|
||||
with doc.retokenize() as retokenizer:
|
||||
|
@ -305,10 +291,10 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
|
|||
|
||||
# check that B is preserved if span[start] is B
|
||||
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
|
||||
heads = [0, -1, 1, 1, -4, -5, -1, -7, -8]
|
||||
ents = [(3, 5, "ent-de"), (5, 7, "ent-de")]
|
||||
heads = [0, 0, 3, 4, 0, 0, 5, 0, 0]
|
||||
ents = [("ent-de", 3, 5), ("ent-de", 5, 7)]
|
||||
deps = ["dep"] * len(words)
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps, ents=ents)
|
||||
with doc.retokenize() as retokenizer:
|
||||
retokenizer.merge(doc[3:5])
|
||||
retokenizer.merge(doc[5:7])
|
||||
|
@ -322,13 +308,13 @@ def test_doc_retokenize_spans_entity_merge_iob(en_vocab):
|
|||
def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
|
||||
# fmt: off
|
||||
text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
|
||||
heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
|
||||
heads = [1, 2, 2, 4, 2, 4, 4, 2, 9, 9, 9, 10, 9, 9, 15, 13, 9]
|
||||
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
|
||||
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
|
||||
'compound', 'dobj', 'punct']
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
sent1, sent2 = list(doc.sents)
|
||||
init_len = len(sent1)
|
||||
init_len2 = len(sent2)
|
||||
|
@ -343,13 +329,13 @@ def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer):
|
|||
def test_doc_retokenize_spans_subtree_size_check(en_tokenizer):
|
||||
# fmt: off
|
||||
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
|
||||
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
|
||||
heads = [1, 2, 2, 4, 6, 4, 2, 8, 6, 8, 9, 8, 8, 14, 12]
|
||||
deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
|
||||
"nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
|
||||
"dobj"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
sent1 = list(doc.sents)[0]
|
||||
init_len = len(list(sent1.root.subtree))
|
||||
with doc.retokenize() as retokenizer:
|
||||
|
|
|
@ -2,13 +2,11 @@ import pytest
|
|||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc, Token
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_doc_retokenize_split(en_vocab):
|
||||
words = ["LosAngeles", "start", "."]
|
||||
heads = [1, 1, 0]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads)
|
||||
heads = [1, 2, 2]
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
assert len(doc) == 3
|
||||
assert len(str(doc)) == 19
|
||||
assert doc[0].head.text == "start"
|
||||
|
@ -88,11 +86,11 @@ def test_doc_retokenize_spans_sentence_update_after_split(en_vocab):
|
|||
# fmt: off
|
||||
words = ["StewartLee", "is", "a", "stand", "up", "comedian", ".", "He",
|
||||
"lives", "in", "England", "and", "loves", "JoePasquale", "."]
|
||||
heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2]
|
||||
heads = [1, 1, 3, 5, 3, 1, 1, 8, 8, 8, 9, 8, 8, 14, 12]
|
||||
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
|
||||
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
|
||||
# fmt: on
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
sent1, sent2 = list(doc.sents)
|
||||
init_len = len(sent1)
|
||||
init_len2 = len(sent2)
|
||||
|
|
|
@ -4,19 +4,17 @@ from spacy.tokens import Doc, Span
|
|||
from spacy.vocab import Vocab
|
||||
from spacy.util import filter_spans
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_tokenizer):
|
||||
# fmt: off
|
||||
text = "This is a sentence. This is another sentence. And a third."
|
||||
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
|
||||
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
|
||||
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
|
||||
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
return Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -69,10 +67,10 @@ def test_spans_string_fn(doc):
|
|||
|
||||
def test_spans_root2(en_tokenizer):
|
||||
text = "through North and South Carolina"
|
||||
heads = [0, 3, -1, -2, -4]
|
||||
heads = [0, 4, 1, 1, 0]
|
||||
deps = ["dep"] * len(heads)
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
assert doc[-2:].root.text == "Carolina"
|
||||
|
||||
|
||||
|
@ -92,10 +90,10 @@ def test_spans_span_sent(doc, doc_not_parsed):
|
|||
def test_spans_lca_matrix(en_tokenizer):
|
||||
"""Test span's lca matrix generation"""
|
||||
tokens = en_tokenizer("the lazy dog slept")
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
heads=[2, 1, 1, 0],
|
||||
heads=[2, 2, 3, 3],
|
||||
deps=["dep"] * 4,
|
||||
)
|
||||
lca = doc[:2].get_lca_matrix()
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import pytest
|
||||
from spacy.tokens import Doc
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
|
@ -8,10 +7,10 @@ def doc(en_vocab):
|
|||
words = ["c", "d", "e"]
|
||||
pos = ["VERB", "NOUN", "NOUN"]
|
||||
tags = ["VBP", "NN", "NN"]
|
||||
heads = [0, -1, -2]
|
||||
heads = [0, 0, 0]
|
||||
deps = ["ROOT", "dobj", "dobj"]
|
||||
ents = [(1, 2, "ORG")]
|
||||
return get_doc(
|
||||
ents = [("ORG", 1, 2)]
|
||||
return Doc(
|
||||
en_vocab, words=words, pos=pos, tags=tags, heads=heads, deps=deps, ents=ents
|
||||
)
|
||||
|
||||
|
|
|
@ -5,31 +5,24 @@ from spacy.symbols import VERB
|
|||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_tokenizer):
|
||||
def doc(en_vocab):
|
||||
# fmt: off
|
||||
text = "This is a sentence. This is another sentence. And a third."
|
||||
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 0, 1, -2, -1]
|
||||
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
|
||||
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 10, 12, 10, 12]
|
||||
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
|
||||
"attr", "punct", "ROOT", "det", "npadvmod", "punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
return Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
|
||||
|
||||
def test_doc_token_api_strings(en_tokenizer):
|
||||
text = "Give it back! He pleaded."
|
||||
def test_doc_token_api_strings(en_vocab):
|
||||
words = ["Give", "it", "back", "!", "He", "pleaded", "."]
|
||||
pos = ["VERB", "PRON", "PART", "PUNCT", "PRON", "VERB", "PUNCT"]
|
||||
heads = [0, -1, -2, -3, 1, 0, -1]
|
||||
heads = [0, 0, 0, 0, 5, 5, 5]
|
||||
deps = ["ROOT", "dobj", "prt", "punct", "nsubj", "ROOT", "punct"]
|
||||
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, heads=heads, deps=deps
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, heads=heads, deps=deps)
|
||||
assert doc[0].orth_ == "Give"
|
||||
assert doc[0].text == "Give"
|
||||
assert doc[0].text_with_ws == "Give "
|
||||
|
@ -97,88 +90,70 @@ def test_doc_token_api_vectors():
|
|||
assert doc[0].similarity(doc[1]) == cosine
|
||||
|
||||
|
||||
def test_doc_token_api_ancestors(en_tokenizer):
|
||||
def test_doc_token_api_ancestors(en_vocab):
|
||||
# the structure of this sentence depends on the English annotation scheme
|
||||
text = "Yesterday I saw a dog that barked loudly."
|
||||
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
words = ["Yesterday", "I", "saw", "a", "dog", "that", "barked", "loudly", "."]
|
||||
heads = [2, 2, 2, 4, 2, 6, 4, 6, 2]
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
assert [t.text for t in doc[6].ancestors] == ["dog", "saw"]
|
||||
assert [t.text for t in doc[1].ancestors] == ["saw"]
|
||||
assert [t.text for t in doc[2].ancestors] == []
|
||||
|
||||
assert doc[2].is_ancestor(doc[7])
|
||||
assert not doc[6].is_ancestor(doc[2])
|
||||
|
||||
|
||||
def test_doc_token_api_head_setter(en_tokenizer):
|
||||
text = "Yesterday I saw a dog that barked loudly."
|
||||
heads = [2, 1, 0, 1, -2, 1, -2, -1, -6]
|
||||
def test_doc_token_api_head_setter(en_vocab):
|
||||
words = ["Yesterday", "I", "saw", "a", "dog", "that", "barked", "loudly", "."]
|
||||
heads = [2, 2, 2, 4, 2, 6, 4, 6, 2]
|
||||
deps = ["dep"] * len(heads)
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert doc[6].n_lefts == 1
|
||||
assert doc[6].n_rights == 1
|
||||
assert doc[6].left_edge.i == 5
|
||||
assert doc[6].right_edge.i == 7
|
||||
|
||||
assert doc[4].n_lefts == 1
|
||||
assert doc[4].n_rights == 1
|
||||
assert doc[4].left_edge.i == 3
|
||||
assert doc[4].right_edge.i == 7
|
||||
|
||||
assert doc[3].n_lefts == 0
|
||||
assert doc[3].n_rights == 0
|
||||
assert doc[3].left_edge.i == 3
|
||||
assert doc[3].right_edge.i == 3
|
||||
|
||||
assert doc[2].left_edge.i == 0
|
||||
assert doc[2].right_edge.i == 8
|
||||
|
||||
doc[6].head = doc[3]
|
||||
|
||||
assert doc[6].n_lefts == 1
|
||||
assert doc[6].n_rights == 1
|
||||
assert doc[6].left_edge.i == 5
|
||||
assert doc[6].right_edge.i == 7
|
||||
|
||||
assert doc[3].n_lefts == 0
|
||||
assert doc[3].n_rights == 1
|
||||
assert doc[3].left_edge.i == 3
|
||||
assert doc[3].right_edge.i == 7
|
||||
|
||||
assert doc[4].n_lefts == 1
|
||||
assert doc[4].n_rights == 0
|
||||
assert doc[4].left_edge.i == 3
|
||||
assert doc[4].right_edge.i == 7
|
||||
|
||||
assert doc[2].left_edge.i == 0
|
||||
assert doc[2].right_edge.i == 8
|
||||
|
||||
doc[0].head = doc[5]
|
||||
|
||||
assert doc[5].left_edge.i == 0
|
||||
assert doc[6].left_edge.i == 0
|
||||
assert doc[3].left_edge.i == 0
|
||||
assert doc[4].left_edge.i == 0
|
||||
assert doc[2].left_edge.i == 0
|
||||
|
||||
# head token must be from the same document
|
||||
doc2 = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
doc2 = Doc(en_vocab, words=words, heads=heads)
|
||||
with pytest.raises(ValueError):
|
||||
doc[0].head = doc2[0]
|
||||
|
||||
# test sentence starts when two sentences are joined
|
||||
text = "This is one sentence. This is another sentence."
|
||||
heads = [0, -1, -2, -3, -4, 0, -1, -2, -3, -4]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
heads=heads,
|
||||
deps=["dep"] * len(heads),
|
||||
)
|
||||
# fmt: off
|
||||
words = ["This", "is", "one", "sentence", ".", "This", "is", "another", "sentence", "."]
|
||||
heads = [0, 0, 0, 0, 0, 5, 5, 5, 5, 5]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * len(heads))
|
||||
# initially two sentences
|
||||
assert doc[0].is_sent_start
|
||||
assert doc[5].is_sent_start
|
||||
|
@ -186,7 +161,6 @@ def test_doc_token_api_head_setter(en_tokenizer):
|
|||
assert doc[0].right_edge == doc[4]
|
||||
assert doc[5].left_edge == doc[5]
|
||||
assert doc[5].right_edge == doc[9]
|
||||
|
||||
# modifying with a sentence doesn't change sent starts
|
||||
doc[2].head = doc[3]
|
||||
assert doc[0].is_sent_start
|
||||
|
@ -195,7 +169,6 @@ def test_doc_token_api_head_setter(en_tokenizer):
|
|||
assert doc[0].right_edge == doc[4]
|
||||
assert doc[5].left_edge == doc[5]
|
||||
assert doc[5].right_edge == doc[9]
|
||||
|
||||
# attach the second sentence to the first, resulting in one sentence
|
||||
doc[5].head = doc[0]
|
||||
assert doc[0].is_sent_start
|
||||
|
@ -252,28 +225,28 @@ def test_tokenlast_has_sent_end_true():
|
|||
|
||||
|
||||
def test_token_api_conjuncts_chain(en_vocab):
|
||||
words = "The boy and the girl and the man went .".split()
|
||||
heads = [1, 7, -1, 1, -3, -1, 1, -3, 0, -1]
|
||||
words = ["The", "boy", "and", "the", "girl", "and", "the", "man", "went", "."]
|
||||
heads = [1, 8, 1, 4, 1, 4, 7, 4, 8, 8]
|
||||
deps = ["det", "nsubj", "cc", "det", "conj", "cc", "det", "conj", "ROOT", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert [w.text for w in doc[1].conjuncts] == ["girl", "man"]
|
||||
assert [w.text for w in doc[4].conjuncts] == ["boy", "man"]
|
||||
assert [w.text for w in doc[7].conjuncts] == ["boy", "girl"]
|
||||
|
||||
|
||||
def test_token_api_conjuncts_simple(en_vocab):
|
||||
words = "They came and went .".split()
|
||||
heads = [1, 0, -1, -2, -1]
|
||||
words = ["They", "came", "and", "went", "."]
|
||||
heads = [1, 1, 1, 1, 3]
|
||||
deps = ["nsubj", "ROOT", "cc", "conj", "dep"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert [w.text for w in doc[1].conjuncts] == ["went"]
|
||||
assert [w.text for w in doc[3].conjuncts] == ["came"]
|
||||
|
||||
|
||||
def test_token_api_non_conjuncts(en_vocab):
|
||||
words = "They came .".split()
|
||||
heads = [1, 0, -1]
|
||||
words = ["They", "came", "."]
|
||||
heads = [1, 1, 1]
|
||||
deps = ["nsubj", "ROOT", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert [w.text for w in doc[0].conjuncts] == []
|
||||
assert [w.text for w in doc[1].conjuncts] == []
|
||||
|
|
|
@ -1,30 +1,26 @@
|
|||
from ...util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_de_parser_noun_chunks_standard_de(de_tokenizer):
|
||||
text = "Eine Tasse steht auf dem Tisch."
|
||||
heads = [1, 1, 0, -1, 1, -2, -4]
|
||||
def test_de_parser_noun_chunks_standard_de(de_vocab):
|
||||
words = ["Eine", "Tasse", "steht", "auf", "dem", "Tisch", "."]
|
||||
heads = [1, 2, 2, 2, 5, 3, 2]
|
||||
pos = ["DET", "NOUN", "VERB", "ADP", "DET", "NOUN", "PUNCT"]
|
||||
deps = ["nk", "sb", "ROOT", "mo", "nk", "nk", "punct"]
|
||||
tokens = de_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(de_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "Eine Tasse "
|
||||
assert chunks[1].text_with_ws == "dem Tisch "
|
||||
|
||||
|
||||
def test_de_extended_chunk(de_tokenizer):
|
||||
text = "Die Sängerin singt mit einer Tasse Kaffee Arien."
|
||||
heads = [1, 1, 0, -1, 1, -2, -1, -5, -6]
|
||||
def test_de_extended_chunk(de_vocab):
|
||||
# fmt: off
|
||||
words = ["Die", "Sängerin", "singt", "mit", "einer", "Tasse", "Kaffee", "Arien", "."]
|
||||
heads = [1, 2, 2, 2, 5, 3, 5, 2, 2]
|
||||
pos = ["DET", "NOUN", "VERB", "ADP", "DET", "NOUN", "NOUN", "NOUN", "PUNCT"]
|
||||
deps = ["nk", "sb", "ROOT", "mo", "nk", "nk", "nk", "oa", "punct"]
|
||||
tokens = de_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
# fmt: on
|
||||
doc = Doc(de_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "Die Sängerin "
|
||||
|
|
|
@ -2,13 +2,10 @@ import numpy
|
|||
from spacy.attrs import HEAD, DEP
|
||||
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
|
||||
from spacy.lang.en.syntax_iterators import noun_chunks
|
||||
|
||||
from spacy.tokens import Doc
|
||||
import pytest
|
||||
|
||||
|
||||
from ...util import get_doc
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed(en_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
|
||||
"""
|
||||
|
@ -19,9 +16,9 @@ def test_noun_chunks_is_parsed(en_tokenizer):
|
|||
|
||||
def test_en_noun_chunks_not_nested(en_vocab):
|
||||
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
|
||||
heads = [1, 0, 4, 3, -1, -2, -5]
|
||||
heads = [1, 1, 6, 6, 3, 3, 1]
|
||||
deps = ["nsubj", "ROOT", "amod", "nmod", "cc", "conj", "dobj"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc.from_array(
|
||||
[HEAD, DEP],
|
||||
numpy.asarray(
|
||||
|
|
|
@ -1,63 +1,51 @@
|
|||
from ...util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_en_parser_noun_chunks_standard(en_tokenizer):
|
||||
text = "A base phrase should be recognized."
|
||||
heads = [2, 1, 3, 2, 1, 0, -1]
|
||||
def test_en_parser_noun_chunks_standard(en_vocab):
|
||||
words = ["A", "base", "phrase", "should", "be", "recognized", "."]
|
||||
heads = [2, 2, 5, 5, 5, 5, 5]
|
||||
pos = ["DET", "ADJ", "NOUN", "AUX", "VERB", "VERB", "PUNCT"]
|
||||
deps = ["det", "amod", "nsubjpass", "aux", "auxpass", "ROOT", "punct"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 1
|
||||
assert chunks[0].text_with_ws == "A base phrase "
|
||||
|
||||
|
||||
def test_en_parser_noun_chunks_coordinated(en_tokenizer):
|
||||
def test_en_parser_noun_chunks_coordinated(en_vocab):
|
||||
# fmt: off
|
||||
text = "A base phrase and a good phrase are often the same."
|
||||
heads = [2, 1, 5, -1, 2, 1, -4, 0, -1, 1, -3, -4]
|
||||
words = ["A", "base", "phrase", "and", "a", "good", "phrase", "are", "often", "the", "same", "."]
|
||||
heads = [2, 2, 7, 2, 6, 6, 2, 7, 7, 10, 7, 7]
|
||||
pos = ["DET", "NOUN", "NOUN", "CCONJ", "DET", "ADJ", "NOUN", "VERB", "ADV", "DET", "ADJ", "PUNCT"]
|
||||
deps = ["det", "compound", "nsubj", "cc", "det", "amod", "conj", "ROOT", "advmod", "det", "attr", "punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "A base phrase "
|
||||
assert chunks[1].text_with_ws == "a good phrase "
|
||||
|
||||
|
||||
def test_en_parser_noun_chunks_pp_chunks(en_tokenizer):
|
||||
text = "A phrase with another phrase occurs."
|
||||
heads = [1, 4, -1, 1, -2, 0, -1]
|
||||
def test_en_parser_noun_chunks_pp_chunks(en_vocab):
|
||||
words = ["A", "phrase", "with", "another", "phrase", "occurs", "."]
|
||||
heads = [1, 5, 1, 4, 2, 5, 5]
|
||||
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB", "PUNCT"]
|
||||
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT", "punct"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 2
|
||||
assert chunks[0].text_with_ws == "A phrase "
|
||||
assert chunks[1].text_with_ws == "another phrase "
|
||||
|
||||
|
||||
def test_en_parser_noun_chunks_appositional_modifiers(en_tokenizer):
|
||||
def test_en_parser_noun_chunks_appositional_modifiers(en_vocab):
|
||||
# fmt: off
|
||||
text = "Sam, my brother, arrived to the house."
|
||||
heads = [5, -1, 1, -3, -4, 0, -1, 1, -2, -4]
|
||||
words = ["Sam", ",", "my", "brother", ",", "arrived", "to", "the", "house", "."]
|
||||
heads = [5, 0, 3, 0, 0, 5, 5, 8, 6, 5]
|
||||
pos = ["PROPN", "PUNCT", "DET", "NOUN", "PUNCT", "VERB", "ADP", "DET", "NOUN", "PUNCT"]
|
||||
deps = ["nsubj", "punct", "poss", "appos", "punct", "ROOT", "prep", "det", "pobj", "punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "Sam "
|
||||
|
@ -65,15 +53,12 @@ def test_en_parser_noun_chunks_appositional_modifiers(en_tokenizer):
|
|||
assert chunks[2].text_with_ws == "the house "
|
||||
|
||||
|
||||
def test_en_parser_noun_chunks_dative(en_tokenizer):
|
||||
text = "She gave Bob a raise."
|
||||
heads = [1, 0, -1, 1, -3, -4]
|
||||
def test_en_parser_noun_chunks_dative(en_vocab):
|
||||
words = ["She", "gave", "Bob", "a", "raise", "."]
|
||||
heads = [1, 1, 1, 4, 1, 1]
|
||||
pos = ["PRON", "VERB", "PROPN", "DET", "NOUN", "PUNCT"]
|
||||
deps = ["nsubj", "ROOT", "dative", "det", "dobj", "punct"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], pos=pos, deps=deps, heads=heads
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, pos=pos, deps=deps, heads=heads)
|
||||
chunks = list(doc.noun_chunks)
|
||||
assert len(chunks) == 3
|
||||
assert chunks[0].text_with_ws == "She "
|
||||
|
|
|
@ -1,15 +1,16 @@
|
|||
import pytest
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from ...util import get_doc, apply_transition_sequence
|
||||
from ...util import apply_transition_sequence
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", ["A test sentence"])
|
||||
@pytest.mark.parametrize("words", [["A", "test", "sentence"]])
|
||||
@pytest.mark.parametrize("punct", [".", "!", "?", ""])
|
||||
def test_en_sbd_single_punct(en_tokenizer, text, punct):
|
||||
heads = [2, 1, 0, -1] if punct else [2, 1, 0]
|
||||
def test_en_sbd_single_punct(en_vocab, words, punct):
|
||||
heads = [2, 2, 2, 2] if punct else [2, 2, 2]
|
||||
deps = ["dep"] * len(heads)
|
||||
tokens = en_tokenizer(text + punct)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
words = [*words, punct] if punct else words
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert len(doc) == 4 if punct else 3
|
||||
assert len(list(doc.sents)) == 1
|
||||
assert sum(len(sent) for sent in doc.sents) == len(doc)
|
||||
|
@ -18,17 +19,16 @@ def test_en_sbd_single_punct(en_tokenizer, text, punct):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_en_sentence_breaks(en_tokenizer, en_parser):
|
||||
def test_en_sentence_breaks(en_vocab, en_parser):
|
||||
# fmt: off
|
||||
text = "This is a sentence . This is another one ."
|
||||
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3]
|
||||
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "one", "."]
|
||||
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6]
|
||||
deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
|
||||
"attr", "punct"]
|
||||
transition = ["L-nsubj", "S", "L-det", "R-attr", "D", "R-punct", "B-ROOT",
|
||||
"L-nsubj", "S", "L-attr", "R-attr", "D", "R-punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
apply_transition_sequence(en_parser, doc, transition)
|
||||
assert len(list(doc.sents)) == 2
|
||||
for token in doc:
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import pytest
|
||||
|
||||
from ...util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_ru_doc_lemmatization(ru_lemmatizer):
|
||||
|
@ -11,7 +10,7 @@ def test_ru_doc_lemmatization(ru_lemmatizer):
|
|||
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
|
||||
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
|
||||
]
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
|
||||
doc = Doc(ru_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
|
||||
doc = ru_lemmatizer(doc)
|
||||
lemmas = [token.lemma_ for token in doc]
|
||||
assert lemmas == ["мама", "мыть", "рама"]
|
||||
|
@ -28,7 +27,7 @@ def test_ru_doc_lemmatization(ru_lemmatizer):
|
|||
],
|
||||
)
|
||||
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
|
||||
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert sorted(result_lemmas) == lemmas
|
||||
|
||||
|
@ -51,7 +50,7 @@ def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
|
|||
def test_ru_lemmatizer_works_with_different_pos_homonyms(
|
||||
ru_lemmatizer, text, pos, morph, lemma
|
||||
):
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
|
||||
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=[pos], morphs=[morph])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert result_lemmas == [lemma]
|
||||
|
||||
|
@ -66,13 +65,13 @@ def test_ru_lemmatizer_works_with_different_pos_homonyms(
|
|||
],
|
||||
)
|
||||
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morph, lemma):
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
|
||||
doc = Doc(ru_lemmatizer.vocab, words=[text], pos=["NOUN"], morphs=[morph])
|
||||
result_lemmas = ru_lemmatizer.pymorphy2_lemmatize(doc[0])
|
||||
assert result_lemmas == [lemma]
|
||||
|
||||
|
||||
def test_ru_lemmatizer_punct(ru_lemmatizer):
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
|
||||
doc = Doc(ru_lemmatizer.vocab, words=["«"], pos=["PUNCT"])
|
||||
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
||||
doc = get_doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
|
||||
doc = Doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
|
||||
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import pytest
|
||||
|
||||
from ...util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_sv(sv_tokenizer):
|
||||
|
@ -16,21 +15,21 @@ SV_NP_TEST_EXAMPLES = [
|
|||
"En student läste en bok", # A student read a book
|
||||
["DET", "NOUN", "VERB", "DET", "NOUN"],
|
||||
["det", "nsubj", "ROOT", "det", "dobj"],
|
||||
[1, 1, 0, 1, -2],
|
||||
[1, 2, 2, 4, 2],
|
||||
["En student", "en bok"],
|
||||
),
|
||||
(
|
||||
"Studenten läste den bästa boken.", # The student read the best book
|
||||
["NOUN", "VERB", "DET", "ADJ", "NOUN", "PUNCT"],
|
||||
["nsubj", "ROOT", "det", "amod", "dobj", "punct"],
|
||||
[1, 0, 2, 1, -3, -4],
|
||||
[1, 1, 4, 4, 1, 1],
|
||||
["Studenten", "den bästa boken"],
|
||||
),
|
||||
(
|
||||
"De samvetslösa skurkarna hade stulit de största juvelerna på söndagen", # The remorseless crooks had stolen the largest jewels that sunday
|
||||
["DET", "ADJ", "NOUN", "VERB", "VERB", "DET", "ADJ", "NOUN", "ADP", "NOUN"],
|
||||
["det", "amod", "nsubj", "aux", "root", "det", "amod", "dobj", "case", "nmod"],
|
||||
[2, 1, 2, 1, 0, 2, 1, -3, 1, -5],
|
||||
[2, 2, 4, 4, 4, 7, 7, 4, 9, 4],
|
||||
["De samvetslösa skurkarna", "de största juvelerna", "på söndagen"],
|
||||
),
|
||||
]
|
||||
|
@ -41,12 +40,9 @@ SV_NP_TEST_EXAMPLES = [
|
|||
)
|
||||
def test_sv_noun_chunks(sv_tokenizer, text, pos, deps, heads, expected_noun_chunks):
|
||||
tokens = sv_tokenizer(text)
|
||||
|
||||
assert len(heads) == len(pos)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps, pos=pos
|
||||
)
|
||||
|
||||
words = [t.text for t in tokens]
|
||||
doc = Doc(tokens.vocab, words=words, heads=heads, deps=deps, pos=pos)
|
||||
noun_chunks = list(doc.noun_chunks)
|
||||
assert len(noun_chunks) == len(expected_noun_chunks)
|
||||
for i, np in enumerate(noun_chunks):
|
||||
|
|
|
@ -4,16 +4,15 @@ import re
|
|||
import copy
|
||||
from mock import Mock
|
||||
from spacy.matcher import DependencyMatcher
|
||||
from ..util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_vocab):
|
||||
text = "The quick brown fox jumped over the lazy fox"
|
||||
heads = [3, 2, 1, 1, 0, -1, 2, 1, -3]
|
||||
words = ["The", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "fox"]
|
||||
heads = [3, 3, 3, 4, 4, 4, 8, 8, 5]
|
||||
deps = ["det", "amod", "amod", "nsubj", "ROOT", "prep", "pobj", "det", "amod"]
|
||||
doc = get_doc(en_vocab, text.split(), heads=heads, deps=deps)
|
||||
return doc
|
||||
return Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -236,10 +235,10 @@ def test_dependency_matcher_callback(en_vocab, doc):
|
|||
@pytest.mark.parametrize("op,num_matches", [(".", 8), (".*", 20), (";", 8), (";*", 20)])
|
||||
def test_dependency_matcher_precedence_ops(en_vocab, op, num_matches):
|
||||
# two sentences to test that all matches are within the same sentence
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
en_vocab,
|
||||
words=["a", "b", "c", "d", "e"] * 2,
|
||||
heads=[0, -1, -2, -3, -4] * 2,
|
||||
heads=[0, 0, 0, 0, 0, 5, 5, 5, 5, 5],
|
||||
deps=["dep"] * 10,
|
||||
)
|
||||
match_count = 0
|
||||
|
|
|
@ -3,7 +3,6 @@ import srsly
|
|||
from mock import Mock
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import Doc, Span
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_matcher_phrase_matcher(en_vocab):
|
||||
|
@ -140,10 +139,10 @@ def test_phrase_matcher_string_attrs(en_vocab):
|
|||
pos1 = ["PRON", "VERB", "NOUN"]
|
||||
words2 = ["Yes", ",", "you", "hate", "dogs", "very", "much"]
|
||||
pos2 = ["INTJ", "PUNCT", "PRON", "VERB", "NOUN", "ADV", "ADV"]
|
||||
pattern = get_doc(en_vocab, words=words1, pos=pos1)
|
||||
pattern = Doc(en_vocab, words=words1, pos=pos1)
|
||||
matcher = PhraseMatcher(en_vocab, attr="POS")
|
||||
matcher.add("TEST", [pattern])
|
||||
doc = get_doc(en_vocab, words=words2, pos=pos2)
|
||||
doc = Doc(en_vocab, words=words2, pos=pos2)
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 1
|
||||
match_id, start, end = matches[0]
|
||||
|
@ -158,10 +157,10 @@ def test_phrase_matcher_string_attrs_negative(en_vocab):
|
|||
pos1 = ["PRON", "VERB", "NOUN"]
|
||||
words2 = ["matcher:POS-PRON", "matcher:POS-VERB", "matcher:POS-NOUN"]
|
||||
pos2 = ["X", "X", "X"]
|
||||
pattern = get_doc(en_vocab, words=words1, pos=pos1)
|
||||
pattern = Doc(en_vocab, words=words1, pos=pos1)
|
||||
matcher = PhraseMatcher(en_vocab, attr="POS")
|
||||
matcher.add("TEST", [pattern])
|
||||
doc = get_doc(en_vocab, words=words2, pos=pos2)
|
||||
doc = Doc(en_vocab, words=words2, pos=pos2)
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 0
|
||||
|
||||
|
|
|
@ -2,8 +2,7 @@ import pytest
|
|||
from spacy.pipeline._parser_internals.nonproj import ancestors, contains_cycle
|
||||
from spacy.pipeline._parser_internals.nonproj import is_nonproj_tree, is_nonproj_arc
|
||||
from spacy.pipeline._parser_internals import nonproj
|
||||
|
||||
from ..util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -74,16 +73,10 @@ def test_parser_is_nonproj_tree(
|
|||
assert is_nonproj_tree(multirooted_tree) is True
|
||||
|
||||
|
||||
def test_parser_pseudoprojectivity(en_tokenizer):
|
||||
def test_parser_pseudoprojectivity(en_vocab):
|
||||
def deprojectivize(proj_heads, deco_labels):
|
||||
tokens = en_tokenizer("whatever " * len(proj_heads))
|
||||
rel_proj_heads = [head - i for i, head in enumerate(proj_heads)]
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
deps=deco_labels,
|
||||
heads=rel_proj_heads,
|
||||
)
|
||||
words = ["whatever "] * len(proj_heads)
|
||||
doc = Doc(en_vocab, words=words, deps=deco_labels, heads=proj_heads)
|
||||
nonproj.deprojectivize(doc)
|
||||
return [t.head.i for t in doc], [token.dep_ for token in doc]
|
||||
|
||||
|
@ -94,49 +87,39 @@ def test_parser_pseudoprojectivity(en_tokenizer):
|
|||
labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj", "acl", "punct"]
|
||||
labels2 = ["advmod", "root", "det", "nsubj", "advmod", "det", "dobj", "det", "nmod", "aux", "nmod", "advmod", "det", "amod", "punct"]
|
||||
# fmt: on
|
||||
|
||||
assert nonproj.decompose("X||Y") == ("X", "Y")
|
||||
assert nonproj.decompose("X") == ("X", "")
|
||||
assert nonproj.is_decorated("X||Y") is True
|
||||
assert nonproj.is_decorated("X") is False
|
||||
|
||||
nonproj._lift(0, tree)
|
||||
assert tree == [2, 2, 2]
|
||||
|
||||
assert nonproj._get_smallest_nonproj_arc(nonproj_tree) == 7
|
||||
assert nonproj._get_smallest_nonproj_arc(nonproj_tree2) == 10
|
||||
|
||||
# fmt: off
|
||||
proj_heads, deco_labels = nonproj.projectivize(nonproj_tree, labels)
|
||||
assert proj_heads == [1, 2, 2, 4, 5, 2, 7, 5, 2]
|
||||
assert deco_labels == ["det", "nsubj", "root", "det", "dobj", "aux",
|
||||
"nsubj", "acl||dobj", "punct"]
|
||||
|
||||
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
|
||||
assert deproj_heads == nonproj_tree
|
||||
assert undeco_labels == labels
|
||||
|
||||
proj_heads, deco_labels = nonproj.projectivize(nonproj_tree2, labels2)
|
||||
assert proj_heads == [1, 1, 3, 1, 5, 6, 9, 8, 6, 1, 9, 12, 13, 10, 1]
|
||||
assert deco_labels == ["advmod||aux", "root", "det", "nsubj", "advmod",
|
||||
"det", "dobj", "det", "nmod", "aux", "nmod||dobj",
|
||||
"advmod", "det", "amod", "punct"]
|
||||
|
||||
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
|
||||
assert deproj_heads == nonproj_tree2
|
||||
assert undeco_labels == labels2
|
||||
|
||||
# if decoration is wrong such that there is no head with the desired label
|
||||
# the structure is kept and the label is undecorated
|
||||
proj_heads = [1, 2, 2, 4, 5, 2, 7, 5, 2]
|
||||
deco_labels = ["det", "nsubj", "root", "det", "dobj", "aux", "nsubj",
|
||||
"acl||iobj", "punct"]
|
||||
|
||||
deproj_heads, undeco_labels = deprojectivize(proj_heads, deco_labels)
|
||||
assert deproj_heads == proj_heads
|
||||
assert undeco_labels == ["det", "nsubj", "root", "det", "dobj", "aux",
|
||||
"nsubj", "acl", "punct"]
|
||||
|
||||
# if there are two potential new heads, the first one is chosen even if
|
||||
# it"s wrong
|
||||
proj_heads = [1, 1, 3, 1, 5, 6, 9, 8, 6, 1, 9, 12, 13, 10, 1]
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
import pytest
|
||||
|
||||
from spacy.lang.en import English
|
||||
from ..util import get_doc, apply_transition_sequence, make_tempdir
|
||||
from ... import util
|
||||
from ...training import Example
|
||||
from spacy.training import Example
|
||||
from spacy.tokens import Doc
|
||||
from spacy import util
|
||||
|
||||
from ..util import apply_transition_sequence, make_tempdir
|
||||
|
||||
|
||||
TRAIN_DATA = [
|
||||
(
|
||||
|
@ -23,12 +25,11 @@ TRAIN_DATA = [
|
|||
]
|
||||
|
||||
|
||||
def test_parser_root(en_tokenizer):
|
||||
text = "i don't have other assistance"
|
||||
heads = [3, 2, 1, 0, 1, -2]
|
||||
def test_parser_root(en_vocab):
|
||||
words = ["i", "do", "n't", "have", "other", "assistance"]
|
||||
heads = [3, 3, 3, 3, 5, 3]
|
||||
deps = ["nsubj", "aux", "neg", "ROOT", "amod", "dobj"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
for t in doc:
|
||||
assert t.dep != 0, t.text
|
||||
|
||||
|
@ -36,13 +37,9 @@ def test_parser_root(en_tokenizer):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
@pytest.mark.parametrize("text", ["Hello"])
|
||||
def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize("words", [["Hello"]])
|
||||
def test_parser_parse_one_word_sentence(en_vocab, en_parser, words):
|
||||
doc = Doc(en_vocab, words=words, heads=[0], deps=["ROOT"])
|
||||
assert len(doc) == 1
|
||||
with en_parser.step_through(doc) as _: # noqa: F841
|
||||
pass
|
||||
|
@ -52,24 +49,22 @@ def test_parser_parse_one_word_sentence(en_tokenizer, en_parser, text):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_parser_initial(en_tokenizer, en_parser):
|
||||
text = "I ate the pizza with anchovies."
|
||||
# heads = [1, 0, 1, -2, -3, -1, -5]
|
||||
def test_parser_initial(en_vocab, en_parser):
|
||||
words = ["I", "ate", "the", "pizza", "with", "anchovies", "."]
|
||||
transition = ["L-nsubj", "S", "L-det"]
|
||||
tokens = en_tokenizer(text)
|
||||
apply_transition_sequence(en_parser, tokens, transition)
|
||||
assert tokens[0].head.i == 1
|
||||
assert tokens[1].head.i == 1
|
||||
assert tokens[2].head.i == 3
|
||||
assert tokens[3].head.i == 3
|
||||
doc = Doc(en_vocab, words=words)
|
||||
apply_transition_sequence(en_parser, doc, transition)
|
||||
assert doc[0].head.i == 1
|
||||
assert doc[1].head.i == 1
|
||||
assert doc[2].head.i == 3
|
||||
assert doc[3].head.i == 3
|
||||
|
||||
|
||||
def test_parser_parse_subtrees(en_tokenizer, en_parser):
|
||||
text = "The four wheels on the bus turned quickly"
|
||||
heads = [2, 1, 4, -1, 1, -2, 0, -1]
|
||||
def test_parser_parse_subtrees(en_vocab, en_parser):
|
||||
words = ["The", "four", "wheels", "on", "the", "bus", "turned", "quickly"]
|
||||
heads = [2, 2, 6, 2, 5, 3, 6, 6]
|
||||
deps = ["dep"] * len(heads)
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert len(list(doc[2].lefts)) == 2
|
||||
assert len(list(doc[2].rights)) == 1
|
||||
assert len(list(doc[2].children)) == 3
|
||||
|
@ -79,15 +74,12 @@ def test_parser_parse_subtrees(en_tokenizer, en_parser):
|
|||
assert len(list(doc[2].subtree)) == 6
|
||||
|
||||
|
||||
def test_parser_merge_pp(en_tokenizer):
|
||||
text = "A phrase with another phrase occurs"
|
||||
heads = [1, 4, -1, 1, -2, 0]
|
||||
def test_parser_merge_pp(en_vocab):
|
||||
words = ["A", "phrase", "with", "another", "phrase", "occurs"]
|
||||
heads = [1, 5, 1, 4, 2, 5]
|
||||
deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
|
||||
pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], deps=deps, heads=heads, pos=pos
|
||||
)
|
||||
doc = Doc(en_vocab, words=words, deps=deps, heads=heads, pos=pos)
|
||||
with doc.retokenize() as retokenizer:
|
||||
for np in doc.noun_chunks:
|
||||
retokenizer.merge(np, attrs={"lemma": np.lemma_})
|
||||
|
@ -100,12 +92,11 @@ def test_parser_merge_pp(en_tokenizer):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
|
||||
text = "a b c d e"
|
||||
|
||||
def test_parser_arc_eager_finalize_state(en_vocab, en_parser):
|
||||
words = ["a", "b", "c", "d", "e"]
|
||||
# right branching
|
||||
transition = ["R-nsubj", "D", "R-nsubj", "R-nsubj", "D", "R-ROOT"]
|
||||
tokens = en_tokenizer(text)
|
||||
tokens = Doc(en_vocab, words=words)
|
||||
apply_transition_sequence(en_parser, tokens, transition)
|
||||
|
||||
assert tokens[0].n_lefts == 0
|
||||
|
@ -140,7 +131,7 @@ def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
|
|||
|
||||
# left branching
|
||||
transition = ["S", "S", "S", "L-nsubj", "L-nsubj", "L-nsubj", "L-nsubj"]
|
||||
tokens = en_tokenizer(text)
|
||||
tokens = Doc(en_vocab, words=words)
|
||||
apply_transition_sequence(en_parser, tokens, transition)
|
||||
|
||||
assert tokens[0].n_lefts == 0
|
||||
|
@ -177,10 +168,10 @@ def test_parser_arc_eager_finalize_state(en_tokenizer, en_parser):
|
|||
def test_parser_set_sent_starts(en_vocab):
|
||||
# fmt: off
|
||||
words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
|
||||
heads = [1, 0, -1, 27, 0, -1, 1, -3, -1, 8, 4, 3, -1, 1, 3, 1, 1, -11, -1, 1, -9, -1, 4, -1, 2, 1, -6, -1, 1, 2, 1, -6, -1, -1, -17, -31, -32, -1]
|
||||
heads = [1, 1, 1, 30, 4, 4, 7, 4, 7, 17, 14, 14, 11, 14, 17, 16, 17, 6, 17, 20, 11, 20, 26, 22, 26, 26, 20, 26, 29, 31, 31, 25, 31, 32, 17, 4, 4, 36]
|
||||
deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
|
||||
# fmt: on
|
||||
doc = get_doc(en_vocab, words=words, deps=deps, heads=heads)
|
||||
doc = Doc(en_vocab, words=words, deps=deps, heads=heads)
|
||||
for i in range(len(words)):
|
||||
if i == 0 or i == 3:
|
||||
assert doc[i].is_sent_start is True
|
||||
|
@ -201,24 +192,21 @@ def test_overfitting_IO():
|
|||
for dep in annotations.get("deps", []):
|
||||
parser.add_label(dep)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(100):
|
||||
losses = {}
|
||||
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
||||
assert losses["parser"] < 0.0001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like securities."
|
||||
doc = nlp(test_text)
|
||||
assert doc[0].dep_ is "nsubj"
|
||||
assert doc[2].dep_ is "dobj"
|
||||
assert doc[3].dep_ is "punct"
|
||||
|
||||
assert doc[0].dep_ == "nsubj"
|
||||
assert doc[2].dep_ == "dobj"
|
||||
assert doc[3].dep_ == "punct"
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
assert doc2[0].dep_ is "nsubj"
|
||||
assert doc2[2].dep_ is "dobj"
|
||||
assert doc2[3].dep_ is "punct"
|
||||
assert doc2[0].dep_ == "nsubj"
|
||||
assert doc2[2].dep_ == "dobj"
|
||||
assert doc2[3].dep_ == "punct"
|
||||
|
|
|
@ -1,59 +1,75 @@
|
|||
import pytest
|
||||
|
||||
from ..util import get_doc
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def text():
|
||||
return """
|
||||
It was a bright cold day in April, and the clocks were striking thirteen.
|
||||
Winston Smith, his chin nuzzled into his breast in an effort to escape the
|
||||
vile wind, slipped quickly through the glass doors of Victory Mansions,
|
||||
though not quickly enough to prevent a swirl of gritty dust from entering
|
||||
along with him.
|
||||
|
||||
The hallway smelt of boiled cabbage and old rag mats. At one end of it a
|
||||
coloured poster, too large for indoor display, had been tacked to the wall.
|
||||
It depicted simply an enormous face, more than a metre wide: the face of a
|
||||
man of about forty-five, with a heavy black moustache and ruggedly handsome
|
||||
features. Winston made for the stairs. It was no use trying the lift. Even at
|
||||
the best of times it was seldom working, and at present the electric current
|
||||
was cut off during daylight hours. It was part of the economy drive in
|
||||
preparation for Hate Week. The flat was seven flights up, and Winston, who
|
||||
was thirty-nine and had a varicose ulcer above his right ankle, went slowly,
|
||||
resting several times on the way. On each landing, opposite the lift-shaft,
|
||||
the poster with the enormous face gazed from the wall. It was one of those
|
||||
pictures which are so contrived that the eyes follow you about when you move.
|
||||
BIG BROTHER IS WATCHING YOU, the caption beneath it ran.
|
||||
"""
|
||||
def words():
|
||||
# fmt: off
|
||||
return [
|
||||
"\n", "It", "was", "a", "bright", "cold", "day", "in", "April", ",",
|
||||
"and", "the", "clocks", "were", "striking", "thirteen", ".", "\n",
|
||||
"Winston", "Smith", ",", "his", "chin", "nuzzled", "into", "his",
|
||||
"breast", "in", "an", "effort", "to", "escape", "the", "\n", "vile",
|
||||
"wind", ",", "slipped", "quickly", "through", "the", "glass", "doors",
|
||||
"of", "Victory", "Mansions", ",", "\n", "though", "not", "quickly",
|
||||
"enough", "to", "prevent", "a", "swirl", "of", "gritty", "dust",
|
||||
"from", "entering", "\n", "along", "with", "him", ".", "\n\n", "The",
|
||||
"hallway", "smelt", "of", "boiled", "cabbage", "and", "old", "rag",
|
||||
"mats", ".", "At", "one", "end", "of", "it", "a", "\n", "coloured",
|
||||
"poster", ",", "too", "large", "for", "indoor", "display", ",", "had",
|
||||
"been", "tacked", "to", "the", "wall", ".", "\n", "It", "depicted",
|
||||
"simply", "an", "enormous", "face", ",", "more", "than", "a", "metre",
|
||||
"wide", ":", "the", "face", "of", "a", "\n", "man", "of", "about",
|
||||
"forty", "-", "five", ",", "with", "a", "heavy", "black", "moustache",
|
||||
"and", "ruggedly", "handsome", "\n", "features", ".", "Winston", "made",
|
||||
"for", "the", "stairs", ".", "It", "was", "no", "use", "trying", "the",
|
||||
"lift", ".", "Even", "at", "\n", "the", "best", "of", "times", "it",
|
||||
"was", "seldom", "working", ",", "and", "at", "present", "the",
|
||||
"electric", "current", "\n", "was", "cut", "off", "during", "daylight",
|
||||
"hours", ".", "It", "was", "part", "of", "the", "economy", "drive",
|
||||
"in", "\n", "preparation", "for", "Hate", "Week", ".", "The", "flat",
|
||||
"was", "seven", "flights", "up", ",", "and", "Winston", ",", "who",
|
||||
"\n", "was", "thirty", "-", "nine", "and", "had", "a", "varicose",
|
||||
"ulcer", "above", "his", "right", "ankle", ",", "went", "slowly", ",",
|
||||
"\n", "resting", "several", "times", "on", "the", "way", ".", "On",
|
||||
"each", "landing", ",", "opposite", "the", "lift", "-", "shaft", ",",
|
||||
"\n", "the", "poster", "with", "the", "enormous", "face", "gazed",
|
||||
"from", "the", "wall", ".", "It", "was", "one", "of", "those", "\n",
|
||||
"pictures", "which", "are", "so", "contrived", "that", "the", "eyes",
|
||||
"follow", "you", "about", "when", "you", "move", ".", "\n", "BIG",
|
||||
"BROTHER", "IS", "WATCHING", "YOU", ",", "the", "caption", "beneath",
|
||||
"it", "ran", ".", "\n", ]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def heads():
|
||||
# fmt: off
|
||||
return [1, 1, 0, 3, 2, 1, -4, -1, -1, -7, -8, 1, 2, 1, -12, -1, -2,
|
||||
-1, 1, 4, 3, 1, 1, 0, -1, 1, -2, -4, 1, -2, 1, -2, 3, -1, 1,
|
||||
-4, -13, -14, -1, -2, 2, 1, -3, -1, 1, -2, -9, -1, -11, 1, 1, -14,
|
||||
1, -2, 1, -2, -1, 1, -2, -6, -1, -1, -2, -1, -1, -42, -1, 1, 1,
|
||||
0, -1, 1, -2, -1, 2, 1, -4, -8, 18, 1, -2, -1, -1, 3, -1, 1, 10,
|
||||
9, 1, 7, -1, 1, -2, 3, 2, 1, 0, -1, 1, -2, -4, -1, 1, 0, -1,
|
||||
2, 1, -4, -1, 2, 1, 1, 1, -6, -11, 1, 20, -1, 2, -1, -3, -1,
|
||||
3, 2, 1, -4, -10, -11, 3, 2, 1, -4, -1, 1, -3, -1, 0, -1, 1, 0,
|
||||
-1, 1, -2, -4, 1, 0, 1, -2, -1, 1, -2, -6, 1, 9, -1, 1, 6, -1,
|
||||
-1, 3, 2, 1, 0, -1, -2, 7, -1, 2, 1, 3, -1, 1, -10, -1, -2, 1,
|
||||
-2, -5, 1, 0, -1, -1, 1, -2, -5, -1, -1, -2, -1, 1, -2, -12, 1,
|
||||
1, 0, 1, -2, -1, -4, -5, 18, -1, 2, -1, -4, 2, 1, -3, -4, -5, 2,
|
||||
1, -3, -1, 2, 1, -3, -17, -24, -1, -2, -1, -4, 1, -2, -3, 1, -2,
|
||||
-10, 17, 1, -2, 14, 13, 3, 2, 1, -4, 8, -1, 1, 5, -1, 2, 1, -3,
|
||||
0, -1, 1, -2, -4, 1, 0, -1, -1, 2, -1, -3, 1, -2, 1, -2, 3, 1,
|
||||
1, -4, -1, -2, 2, 1, -3, -19, -1, 1, 1, 0, 0, 6, 5, 1, 3, -1,
|
||||
-1, 0, -1, -1]
|
||||
return [
|
||||
1, 2, 2, 6, 6, 6, 2, 6, 7, 2, 2, 12, 14, 14, 2, 14, 14, 16, 19, 23, 23,
|
||||
22, 23, 23, 23, 26, 24, 23, 29, 27, 31, 29, 35, 32, 35, 31, 23, 23, 37,
|
||||
37, 42, 42, 39, 42, 45, 43, 37, 46, 37, 50, 51, 37, 53, 51, 55, 53, 55,
|
||||
58, 56, 53, 59, 60, 60, 62, 63, 23, 65, 68, 69, 69, 69, 72, 70, 72, 76,
|
||||
76, 72, 69, 96, 80, 78, 80, 81, 86, 83, 86, 96, 96, 89, 96, 89, 92, 90,
|
||||
96, 96, 96, 96, 96, 99, 97, 96, 100, 103, 103, 103, 107, 107, 103, 107,
|
||||
111, 111, 112, 113, 107, 103, 116, 136, 116, 120, 118, 117, 120, 125,
|
||||
125, 125, 121, 116, 116, 131, 131, 131, 127, 131, 134, 131, 134, 136,
|
||||
136, 139, 139, 139, 142, 140, 139, 145, 145, 147, 145, 147, 150, 148,
|
||||
145, 153, 162, 153, 156, 162, 156, 157, 162, 162, 162, 162, 162, 162,
|
||||
172, 165, 169, 169, 172, 169, 172, 162, 172, 172, 176, 174, 172, 179,
|
||||
179, 179, 180, 183, 181, 179, 184, 185, 185, 187, 190, 188, 179, 193,
|
||||
194, 194, 196, 194, 196, 194, 194, 218, 200, 204, 202, 200, 207, 207,
|
||||
204, 204, 204, 212, 212, 209, 212, 216, 216, 213, 200, 194, 218, 218,
|
||||
220, 218, 224, 222, 222, 227, 225, 218, 246, 231, 229, 246, 246, 237,
|
||||
237, 237, 233, 246, 238, 241, 246, 241, 245, 245, 242, 246, 246, 249,
|
||||
247, 246, 252, 252, 252, 253, 257, 255, 254, 259, 257, 261, 259, 265,
|
||||
264, 265, 261, 265, 265, 270, 270, 267, 252, 271, 274, 275, 275, 276,
|
||||
283, 283, 280, 283, 280, 281, 283, 283, 284]
|
||||
# fmt: on
|
||||
|
||||
|
||||
def test_parser_parse_navigate_consistency(en_tokenizer, text, heads):
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
def test_parser_parse_navigate_consistency(en_vocab, words, heads):
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
for head in doc:
|
||||
for child in head.lefts:
|
||||
assert child.head == head
|
||||
|
@ -61,15 +77,8 @@ def test_parser_parse_navigate_consistency(en_tokenizer, text, heads):
|
|||
assert child.head == head
|
||||
|
||||
|
||||
def test_parser_parse_navigate_child_consistency(en_tokenizer, text, heads):
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
heads=heads,
|
||||
deps=["dep"] * len(heads),
|
||||
)
|
||||
|
||||
def test_parser_parse_navigate_child_consistency(en_vocab, words, heads):
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=["dep"] * len(heads))
|
||||
lefts = {}
|
||||
rights = {}
|
||||
for head in doc:
|
||||
|
@ -99,9 +108,8 @@ def test_parser_parse_navigate_child_consistency(en_tokenizer, text, heads):
|
|||
assert not children
|
||||
|
||||
|
||||
def test_parser_parse_navigate_edges(en_tokenizer, text, heads):
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
|
||||
def test_parser_parse_navigate_edges(en_vocab, words, heads):
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
for token in doc:
|
||||
subtree = list(token.subtree)
|
||||
debug = "\t".join((token.text, token.left_edge.text, subtree[0].text))
|
||||
|
|
|
@ -1,42 +1,40 @@
|
|||
import pytest
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from spacy.tokens.doc import Doc
|
||||
|
||||
from ..util import get_doc, apply_transition_sequence
|
||||
from ..util import apply_transition_sequence
|
||||
|
||||
|
||||
def test_parser_space_attachment(en_tokenizer):
|
||||
text = "This is a test.\nTo ensure spaces are attached well."
|
||||
heads = [1, 0, 1, -2, -3, -1, 1, 4, -1, 2, 1, 0, -1, -2]
|
||||
def test_parser_space_attachment(en_vocab):
|
||||
# fmt: off
|
||||
words = ["This", "is", "a", "test", ".", "\n", "To", "ensure", " ", "spaces", "are", "attached", "well", "."]
|
||||
heads = [1, 1, 3, 1, 1, 4, 7, 11, 7, 11, 11, 11, 11, 11]
|
||||
# fmt: on
|
||||
deps = ["dep"] * len(heads)
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
for sent in doc.sents:
|
||||
if len(sent) == 1:
|
||||
assert not sent[-1].is_space
|
||||
|
||||
|
||||
def test_parser_sentence_space(en_tokenizer):
|
||||
def test_parser_sentence_space(en_vocab):
|
||||
# fmt: off
|
||||
text = "I look forward to using Thingamajig. I've been told it will make my life easier..."
|
||||
heads = [1, 0, -1, -2, -1, -1, -5, -1, 3, 2, 1, 0, 2, 1, -3, 1, 1, -3, -7]
|
||||
words = ["I", "look", "forward", "to", "using", "Thingamajig", ".", " ", "I", "'ve", "been", "told", "it", "will", "make", "my", "life", "easier", "..."]
|
||||
heads = [1, 1, 1, 1, 3, 4, 1, 6, 11, 11, 11, 11, 14, 14, 11, 16, 17, 14, 11]
|
||||
deps = ["nsubj", "ROOT", "advmod", "prep", "pcomp", "dobj", "punct", "",
|
||||
"nsubjpass", "aux", "auxpass", "ROOT", "nsubj", "aux", "ccomp",
|
||||
"poss", "nsubj", "ccomp", "punct"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert len(list(doc.sents)) == 2
|
||||
|
||||
|
||||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_parser_space_attachment_leading(en_tokenizer, en_parser):
|
||||
text = "\t \n This is a sentence ."
|
||||
heads = [1, 1, 0, 1, -2, -3]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=text.split(" "), heads=heads)
|
||||
def test_parser_space_attachment_leading(en_vocab, en_parser):
|
||||
words = ["\t", "\n", "This", "is", "a", "sentence", "."]
|
||||
heads = [1, 2, 2, 4, 2, 2]
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
assert doc[0].is_space
|
||||
assert doc[1].is_space
|
||||
assert doc[2].text == "This"
|
||||
|
@ -50,18 +48,16 @@ def test_parser_space_attachment_leading(en_tokenizer, en_parser):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
|
||||
text = "This is \t a \t\n \n sentence . \n\n \n"
|
||||
heads = [1, 0, -1, 2, -1, -4, -5, -1]
|
||||
def test_parser_space_attachment_intermediate_trailing(en_vocab, en_parser):
|
||||
words = ["This", "is", "\t", "a", "\t\n", "\n", "sentence", ".", "\n\n", "\n"]
|
||||
heads = [1, 1, 1, 5, 3, 1, 1, 6]
|
||||
transition = ["L-nsubj", "S", "L-det", "R-attr", "D", "R-punct"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(tokens.vocab, words=text.split(" "), heads=heads)
|
||||
doc = Doc(en_vocab, words=words, heads=heads)
|
||||
assert doc[2].is_space
|
||||
assert doc[4].is_space
|
||||
assert doc[5].is_space
|
||||
assert doc[8].is_space
|
||||
assert doc[9].is_space
|
||||
|
||||
apply_transition_sequence(en_parser, doc, transition)
|
||||
for token in doc:
|
||||
assert token.dep != 0 or token.is_space
|
||||
|
@ -72,7 +68,7 @@ def test_parser_space_attachment_intermediate_trailing(en_tokenizer, en_parser):
|
|||
@pytest.mark.skip(
|
||||
reason="The step_through API was removed (but should be brought back)"
|
||||
)
|
||||
def test_parser_space_attachment_space(en_tokenizer, en_parser, text, length):
|
||||
def test_parser_space_attachment_space(en_parser, text, length):
|
||||
doc = Doc(en_parser.vocab, words=text)
|
||||
assert len(doc) == length
|
||||
with en_parser.step_through(doc) as _: # noqa: F841
|
||||
|
|
|
@ -4,8 +4,9 @@ from spacy.training import Example
|
|||
from spacy.lang.en import English
|
||||
from spacy.pipeline import AttributeRuler
|
||||
from spacy import util, registry
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from ..util import get_doc, make_tempdir
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -66,7 +67,6 @@ def test_attributeruler_init(nlp, pattern_dicts):
|
|||
a = nlp.add_pipe("attribute_ruler")
|
||||
for p in pattern_dicts:
|
||||
a.add(**p)
|
||||
|
||||
doc = nlp("This is a test.")
|
||||
assert doc[2].lemma_ == "the"
|
||||
assert doc[2].morph_ == "Case=Nom|Number=Plur"
|
||||
|
@ -129,7 +129,7 @@ def test_attributeruler_rule_order(nlp):
|
|||
{"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "NOUN"}},
|
||||
]
|
||||
a.add_patterns(patterns)
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
nlp.vocab,
|
||||
words=["This", "is", "a", "test", "."],
|
||||
tags=["DT", "VBZ", "DT", "NN", "."],
|
||||
|
@ -141,13 +141,12 @@ def test_attributeruler_rule_order(nlp):
|
|||
def test_attributeruler_tag_map(nlp, tag_map):
|
||||
a = AttributeRuler(nlp.vocab)
|
||||
a.load_from_tag_map(tag_map)
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
nlp.vocab,
|
||||
words=["This", "is", "a", "test", "."],
|
||||
tags=["DT", "VBZ", "DT", "NN", "."],
|
||||
)
|
||||
doc = a(doc)
|
||||
|
||||
for i in range(len(doc)):
|
||||
if i == 4:
|
||||
assert doc[i].pos_ == "PUNCT"
|
||||
|
@ -160,13 +159,12 @@ def test_attributeruler_tag_map(nlp, tag_map):
|
|||
def test_attributeruler_morph_rules(nlp, morph_rules):
|
||||
a = AttributeRuler(nlp.vocab)
|
||||
a.load_from_morph_rules(morph_rules)
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
nlp.vocab,
|
||||
words=["This", "is", "the", "test", "."],
|
||||
tags=["DT", "VBZ", "DT", "NN", "."],
|
||||
)
|
||||
doc = a(doc)
|
||||
|
||||
for i in range(len(doc)):
|
||||
if i != 2:
|
||||
assert doc[i].pos_ == ""
|
||||
|
@ -193,7 +191,6 @@ def test_attributeruler_indices(nlp):
|
|||
|
||||
text = "This is a test."
|
||||
doc = nlp(text)
|
||||
|
||||
for i in range(len(doc)):
|
||||
if i == 1:
|
||||
assert doc[i].lemma_ == "was"
|
||||
|
@ -205,12 +202,10 @@ def test_attributeruler_indices(nlp):
|
|||
assert doc[i].lemma_ == "cat"
|
||||
else:
|
||||
assert doc[i].morph_ == ""
|
||||
|
||||
# raises an error when trying to modify a token outside of the match
|
||||
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=2)
|
||||
with pytest.raises(ValueError):
|
||||
doc = nlp(text)
|
||||
|
||||
# raises an error when trying to modify a token outside of the match
|
||||
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=10)
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -220,7 +215,6 @@ def test_attributeruler_indices(nlp):
|
|||
def test_attributeruler_patterns_prop(nlp, pattern_dicts):
|
||||
a = nlp.add_pipe("attribute_ruler")
|
||||
a.add_patterns(pattern_dicts)
|
||||
|
||||
for p1, p2 in zip(pattern_dicts, a.patterns):
|
||||
assert p1["patterns"] == p2["patterns"]
|
||||
assert p1["attrs"] == p2["attrs"]
|
||||
|
@ -231,18 +225,15 @@ def test_attributeruler_patterns_prop(nlp, pattern_dicts):
|
|||
def test_attributeruler_serialize(nlp, pattern_dicts):
|
||||
a = nlp.add_pipe("attribute_ruler")
|
||||
a.add_patterns(pattern_dicts)
|
||||
|
||||
text = "This is a test."
|
||||
attrs = ["ORTH", "LEMMA", "MORPH"]
|
||||
doc = nlp(text)
|
||||
|
||||
# bytes roundtrip
|
||||
a_reloaded = AttributeRuler(nlp.vocab).from_bytes(a.to_bytes())
|
||||
assert a.to_bytes() == a_reloaded.to_bytes()
|
||||
doc1 = a_reloaded(nlp.make_doc(text))
|
||||
numpy.array_equal(doc.to_array(attrs), doc1.to_array(attrs))
|
||||
assert a.patterns == a_reloaded.patterns
|
||||
|
||||
# disk roundtrip
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
|
|
|
@ -1,57 +1,38 @@
|
|||
import pytest
|
||||
from spacy.pipeline.functions import merge_subtokens
|
||||
from spacy.language import Language
|
||||
from spacy.tokens import Span
|
||||
|
||||
from ..util import get_doc
|
||||
from spacy.tokens import Span, Doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_tokenizer):
|
||||
def doc(en_vocab):
|
||||
# fmt: off
|
||||
text = "This is a sentence. This is another sentence. And a third."
|
||||
heads = [1, 0, 1, -2, -3, 1, 0, 1, -2, -3, 1, 1, 1, 0]
|
||||
words = ["This", "is", "a", "sentence", ".", "This", "is", "another", "sentence", ".", "And", "a", "third", "."]
|
||||
heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 11, 12, 13, 13]
|
||||
deps = ["nsubj", "ROOT", "subtok", "attr", "punct", "nsubj", "ROOT",
|
||||
"subtok", "attr", "punct", "subtok", "subtok", "subtok", "ROOT"]
|
||||
# fmt: on
|
||||
tokens = en_tokenizer(text)
|
||||
return get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
|
||||
return Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc2(en_tokenizer):
|
||||
text = "I like New York in Autumn."
|
||||
heads = [1, 0, 1, -2, -3, -1, -5]
|
||||
def doc2(en_vocab):
|
||||
words = ["I", "like", "New", "York", "in", "Autumn", "."]
|
||||
heads = [1, 1, 3, 1, 1, 4, 1]
|
||||
tags = ["PRP", "IN", "NNP", "NNP", "IN", "NNP", "."]
|
||||
pos = ["PRON", "VERB", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
|
||||
deps = ["ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
|
||||
tokens = en_tokenizer(text)
|
||||
doc = get_doc(
|
||||
tokens.vocab,
|
||||
words=[t.text for t in tokens],
|
||||
heads=heads,
|
||||
tags=tags,
|
||||
pos=pos,
|
||||
deps=deps,
|
||||
)
|
||||
doc.ents = [Span(doc, 2, 4, doc.vocab.strings["GPE"])]
|
||||
doc = Doc(en_vocab, words=words, heads=heads, tags=tags, pos=pos, deps=deps)
|
||||
doc.ents = [Span(doc, 2, 4, label="GPE")]
|
||||
return doc
|
||||
|
||||
|
||||
def test_merge_subtokens(doc):
|
||||
doc = merge_subtokens(doc)
|
||||
# get_doc() doesn't set spaces, so the result is "And a third ."
|
||||
assert [t.text for t in doc] == [
|
||||
"This",
|
||||
"is",
|
||||
"a sentence",
|
||||
".",
|
||||
"This",
|
||||
"is",
|
||||
"another sentence",
|
||||
".",
|
||||
"And a third .",
|
||||
]
|
||||
# Doc doesn't have spaces, so the result is "And a third ."
|
||||
# fmt: off
|
||||
assert [t.text for t in doc] == ["This", "is", "a sentence", ".", "This", "is", "another sentence", ".", "And a third ."]
|
||||
# fmt: on
|
||||
|
||||
|
||||
def test_factories_merge_noun_chunks(doc2):
|
||||
|
|
|
@ -9,7 +9,7 @@ from spacy.lang.en import English
|
|||
from spacy.lookups import Lookups
|
||||
from spacy.tokens import Doc, Span
|
||||
|
||||
from ..util import get_doc, make_tempdir
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -88,12 +88,9 @@ def test_issue242(en_tokenizer):
|
|||
doc.ents += tuple(matches)
|
||||
|
||||
|
||||
def test_issue309(en_tokenizer):
|
||||
def test_issue309(en_vocab):
|
||||
"""Test Issue #309: SBD fails on empty string"""
|
||||
tokens = en_tokenizer(" ")
|
||||
doc = get_doc(
|
||||
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
|
||||
)
|
||||
doc = Doc(en_vocab, words=[" "], heads=[0], deps=["ROOT"])
|
||||
assert len(doc) == 1
|
||||
sents = list(doc.sents)
|
||||
assert len(sents) == 1
|
||||
|
|
|
@ -14,7 +14,7 @@ from spacy.tokens import Doc, Span, Token
|
|||
from spacy.attrs import HEAD, DEP
|
||||
from spacy.matcher import Matcher
|
||||
|
||||
from ..util import make_tempdir, get_doc
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
def test_issue1506():
|
||||
|
@ -197,32 +197,21 @@ def test_issue1807():
|
|||
def test_issue1834():
|
||||
"""Test that sentence boundaries & parse/tag flags are not lost
|
||||
during serialization."""
|
||||
string = "This is a first sentence . And another one"
|
||||
words = string.split()
|
||||
doc = get_doc(Vocab(), words=words)
|
||||
words = ["This", "is", "a", "first", "sentence", ".", "And", "another", "one"]
|
||||
doc = Doc(Vocab(), words=words)
|
||||
doc[6].is_sent_start = True
|
||||
new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes())
|
||||
assert new_doc[6].sent_start
|
||||
assert not new_doc.has_annotation("DEP")
|
||||
assert not new_doc.has_annotation("TAG")
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
Vocab(),
|
||||
words=words,
|
||||
tags=["TAG"] * len(words),
|
||||
heads=[0, -1, -2, -3, -4, -5, 0, -1, -2],
|
||||
heads=[0, 0, 0, 0, 0, 0, 6, 6, 6],
|
||||
deps=["dep"] * len(words),
|
||||
)
|
||||
print(
|
||||
doc.has_annotation("DEP"),
|
||||
[t.head.i for t in doc],
|
||||
[t.is_sent_start for t in doc],
|
||||
)
|
||||
new_doc = Doc(doc.vocab).from_bytes(doc.to_bytes())
|
||||
print(
|
||||
new_doc.has_annotation("DEP"),
|
||||
[t.head.i for t in new_doc],
|
||||
[t.is_sent_start for t in new_doc],
|
||||
)
|
||||
assert new_doc[6].sent_start
|
||||
assert new_doc.has_annotation("DEP")
|
||||
assert new_doc.has_annotation("TAG")
|
||||
|
|
|
@ -7,7 +7,7 @@ from spacy.training import iob_to_biluo
|
|||
from spacy.lang.it import Italian
|
||||
from spacy.lang.en import English
|
||||
|
||||
from ..util import add_vecs_to_vocab, get_doc
|
||||
from ..util import add_vecs_to_vocab
|
||||
|
||||
|
||||
@pytest.mark.skip(
|
||||
|
@ -69,9 +69,10 @@ def test_issue2219(en_vocab):
|
|||
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
|
||||
|
||||
|
||||
def test_issue2361(de_tokenizer):
|
||||
def test_issue2361(de_vocab):
|
||||
chars = ("<", ">", "&", """)
|
||||
doc = de_tokenizer('< > & " ')
|
||||
words = ["<", ">", "&", '"']
|
||||
doc = Doc(de_vocab, words=words, deps=["dep"] * len(words))
|
||||
html = render(doc)
|
||||
for char in chars:
|
||||
assert char in html
|
||||
|
@ -105,7 +106,7 @@ def test_issue2385_biluo(tags):
|
|||
|
||||
def test_issue2396(en_vocab):
|
||||
words = ["She", "created", "a", "test", "for", "spacy"]
|
||||
heads = [1, 0, 1, -2, -1, -1]
|
||||
heads = [1, 1, 3, 1, 3, 4]
|
||||
deps = ["dep"] * len(heads)
|
||||
matrix = numpy.array(
|
||||
[
|
||||
|
@ -118,7 +119,7 @@ def test_issue2396(en_vocab):
|
|||
],
|
||||
dtype=numpy.int32,
|
||||
)
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
span = doc[:]
|
||||
assert (doc.get_lca_matrix() == matrix).all()
|
||||
assert (span.get_lca_matrix() == matrix).all()
|
||||
|
|
|
@ -12,8 +12,6 @@ from spacy.compat import pickle
|
|||
import numpy
|
||||
import random
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_issue2564():
|
||||
"""Test the tagger sets has_annotation("TAG") correctly when used via Language.pipe."""
|
||||
|
@ -117,12 +115,14 @@ def test_issue2754(en_tokenizer):
|
|||
|
||||
def test_issue2772(en_vocab):
|
||||
"""Test that deprojectivization doesn't mess up sentence boundaries."""
|
||||
words = "When we write or communicate virtually , we can hide our true feelings .".split()
|
||||
# fmt: off
|
||||
words = ["When", "we", "write", "or", "communicate", "virtually", ",", "we", "can", "hide", "our", "true", "feelings", "."]
|
||||
# fmt: on
|
||||
# A tree with a non-projective (i.e. crossing) arc
|
||||
# The arcs (0, 4) and (2, 9) cross.
|
||||
heads = [4, 1, 7, -1, -2, -1, 3, 2, 1, 0, 2, 1, -3, -4]
|
||||
heads = [4, 2, 9, 2, 2, 4, 9, 9, 9, 9, 12, 12, 9, 9]
|
||||
deps = ["dep"] * len(heads)
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
assert doc[1].is_sent_start is False
|
||||
|
||||
|
||||
|
|
|
@ -10,10 +10,8 @@ from spacy.vocab import Vocab
|
|||
from spacy.attrs import ENT_IOB, ENT_TYPE
|
||||
from spacy.compat import pickle
|
||||
from spacy import displacy
|
||||
import numpy
|
||||
|
||||
from spacy.vectors import Vectors
|
||||
from ..util import get_doc
|
||||
import numpy
|
||||
|
||||
|
||||
def test_issue3002():
|
||||
|
@ -47,7 +45,7 @@ def test_issue3009(en_vocab):
|
|||
words = ["also", "has", "to", "do", "with"]
|
||||
tags = ["RB", "VBZ", "TO", "VB", "IN"]
|
||||
pos = ["ADV", "VERB", "ADP", "VERB", "ADP"]
|
||||
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos)
|
||||
doc = Doc(en_vocab, words=words, tags=tags, pos=pos)
|
||||
matcher = Matcher(en_vocab)
|
||||
for i, pattern in enumerate(patterns):
|
||||
matcher.add(str(i), [pattern])
|
||||
|
@ -61,19 +59,15 @@ def test_issue3012(en_vocab):
|
|||
words = ["This", "is", "10", "%", "."]
|
||||
tags = ["DT", "VBZ", "CD", "NN", "."]
|
||||
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
|
||||
ents = [(2, 4, "PERCENT")]
|
||||
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
|
||||
ents = [("PERCENT", 2, 4)]
|
||||
doc = Doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
|
||||
assert doc.has_annotation("TAG")
|
||||
|
||||
expected = ("10", "NUM", "CD", "PERCENT")
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
header = [ENT_IOB, ENT_TYPE]
|
||||
ent_array = doc.to_array(header)
|
||||
doc.from_array(header, ent_array)
|
||||
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
# Serializing then deserializing
|
||||
doc_bytes = doc.to_bytes()
|
||||
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
|
||||
|
@ -85,12 +79,8 @@ def test_issue3199():
|
|||
is available. To make this test future-proof, we're constructing a Doc
|
||||
with a new Vocab here and a parse tree to make sure the noun chunks run.
|
||||
"""
|
||||
doc = get_doc(
|
||||
Vocab(),
|
||||
words=["This", "is", "a", "sentence"],
|
||||
heads=[0, -1, -2, -3],
|
||||
deps=["dep"] * 4,
|
||||
)
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
|
||||
assert list(doc[0:3].noun_chunks) == []
|
||||
|
||||
|
||||
|
@ -147,9 +137,9 @@ def test_issue3288(en_vocab):
|
|||
"""Test that retokenization works correctly via displaCy when punctuation
|
||||
is merged onto the preceeding token and tensor is resized."""
|
||||
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
|
||||
heads = [1, 0, -1, 1, 0, 1, -2, -3]
|
||||
heads = [1, 1, 1, 4, 4, 6, 4, 4]
|
||||
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
|
||||
displacy.render(doc)
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import spacy
|
|||
import srsly
|
||||
import numpy
|
||||
|
||||
from ..util import make_tempdir, get_doc
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.mark.parametrize("word", ["don't", "don’t", "I'd", "I’d"])
|
||||
|
@ -355,7 +355,7 @@ def test_issue3882(en_vocab):
|
|||
"""Test that displaCy doesn't serialize the doc.user_data when making a
|
||||
copy of the Doc.
|
||||
"""
|
||||
doc = Doc(en_vocab, words=["Hello", "world"])
|
||||
doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"])
|
||||
doc.user_data["test"] = set()
|
||||
parse_deps(doc)
|
||||
|
||||
|
@ -398,10 +398,10 @@ def test_issue3962(en_vocab):
|
|||
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
|
||||
# fmt: off
|
||||
words = ["He", "jests", "at", "scars", ",", "that", "never", "felt", "a", "wound", "."]
|
||||
heads = [1, 6, -1, -1, 3, 2, 1, 0, 1, -2, -3]
|
||||
heads = [1, 7, 1, 2, 7, 7, 7, 7, 9, 7, 7]
|
||||
deps = ["nsubj", "ccomp", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"]
|
||||
# fmt: on
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
span2 = doc[1:5] # "jests at scars ,"
|
||||
doc2 = span2.as_doc()
|
||||
doc2_json = doc2.to_json()
|
||||
|
@ -436,10 +436,10 @@ def test_issue3962_long(en_vocab):
|
|||
This is achieved by setting the head to itself if it would lie out of the span otherwise."""
|
||||
# fmt: off
|
||||
words = ["He", "jests", "at", "scars", ".", "They", "never", "felt", "a", "wound", "."]
|
||||
heads = [1, 0, -1, -1, -3, 2, 1, 0, 1, -2, -3]
|
||||
heads = [1, 1, 1, 2, 1, 7, 7, 7, 9, 7, 7]
|
||||
deps = ["nsubj", "ROOT", "prep", "pobj", "punct", "nsubj", "neg", "ROOT", "det", "dobj", "punct"]
|
||||
# fmt: on
|
||||
two_sent_doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
two_sent_doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
span2 = two_sent_doc[1:7] # "jests at scars. They never"
|
||||
doc2 = span2.as_doc()
|
||||
doc2_json = doc2.to_json()
|
||||
|
|
138
spacy/tests/regression/test_issue5001-5500.py
Normal file
138
spacy/tests/regression/test_issue5001-5500.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
import numpy
|
||||
from spacy.tokens import Doc, DocBin
|
||||
from spacy.attrs import DEP, POS, TAG
|
||||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.lang.en.syntax_iterators import noun_chunks
|
||||
from spacy.vocab import Vocab
|
||||
import spacy
|
||||
import pytest
|
||||
|
||||
from ...util import make_tempdir
|
||||
|
||||
|
||||
def test_issue5048(en_vocab):
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
pos_s = ["DET", "VERB", "DET", "NOUN"]
|
||||
spaces = [" ", " ", " ", ""]
|
||||
deps_s = ["dep", "adj", "nn", "atm"]
|
||||
tags_s = ["DT", "VBZ", "DT", "NN"]
|
||||
strings = en_vocab.strings
|
||||
for w in words:
|
||||
strings.add(w)
|
||||
deps = [strings.add(d) for d in deps_s]
|
||||
pos = [strings.add(p) for p in pos_s]
|
||||
tags = [strings.add(t) for t in tags_s]
|
||||
attrs = [POS, DEP, TAG]
|
||||
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
doc.from_array(attrs, array)
|
||||
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
|
||||
doc2 = Doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
|
||||
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
|
||||
assert v1 == v2
|
||||
|
||||
|
||||
def test_issue5082():
|
||||
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
|
||||
nlp = English()
|
||||
vocab = nlp.vocab
|
||||
array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32)
|
||||
array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32)
|
||||
array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32)
|
||||
array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32)
|
||||
array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32)
|
||||
vocab.set_vector("I", array1)
|
||||
vocab.set_vector("like", array2)
|
||||
vocab.set_vector("David", array3)
|
||||
vocab.set_vector("Bowie", array4)
|
||||
text = "I like David Bowie"
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
ruler.add_patterns(patterns)
|
||||
parsed_vectors_1 = [t.vector for t in nlp(text)]
|
||||
assert len(parsed_vectors_1) == 4
|
||||
numpy.testing.assert_array_equal(parsed_vectors_1[0], array1)
|
||||
numpy.testing.assert_array_equal(parsed_vectors_1[1], array2)
|
||||
numpy.testing.assert_array_equal(parsed_vectors_1[2], array3)
|
||||
numpy.testing.assert_array_equal(parsed_vectors_1[3], array4)
|
||||
nlp.add_pipe("merge_entities")
|
||||
parsed_vectors_2 = [t.vector for t in nlp(text)]
|
||||
assert len(parsed_vectors_2) == 3
|
||||
numpy.testing.assert_array_equal(parsed_vectors_2[0], array1)
|
||||
numpy.testing.assert_array_equal(parsed_vectors_2[1], array2)
|
||||
numpy.testing.assert_array_equal(parsed_vectors_2[2], array34)
|
||||
|
||||
|
||||
def test_issue5137():
|
||||
@Language.factory("my_component")
|
||||
class MyComponent:
|
||||
def __init__(self, nlp, name="my_component", categories="all_categories"):
|
||||
self.nlp = nlp
|
||||
self.categories = categories
|
||||
self.name = name
|
||||
|
||||
def __call__(self, doc):
|
||||
pass
|
||||
|
||||
def to_disk(self, path, **kwargs):
|
||||
pass
|
||||
|
||||
def from_disk(self, path, **cfg):
|
||||
pass
|
||||
|
||||
nlp = English()
|
||||
my_component = nlp.add_pipe("my_component")
|
||||
assert my_component.categories == "all_categories"
|
||||
with make_tempdir() as tmpdir:
|
||||
nlp.to_disk(tmpdir)
|
||||
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
|
||||
nlp2 = spacy.load(tmpdir, config=overrides)
|
||||
assert nlp2.get_pipe("my_component").categories == "my_categories"
|
||||
|
||||
|
||||
def test_issue5141(en_vocab):
|
||||
""" Ensure an empty DocBin does not crash on serialization """
|
||||
doc_bin = DocBin(attrs=["DEP", "HEAD"])
|
||||
assert list(doc_bin.get_docs(en_vocab)) == []
|
||||
doc_bin_bytes = doc_bin.to_bytes()
|
||||
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
|
||||
assert list(doc_bin_2.get_docs(en_vocab)) == []
|
||||
|
||||
|
||||
def test_issue5152():
|
||||
# Test that the comparison between a Span and a Token, goes well
|
||||
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
|
||||
nlp = English()
|
||||
text = nlp("Talk about being boring!")
|
||||
text_var = nlp("Talk of being boring!")
|
||||
y = nlp("Let")
|
||||
span = text[0:3] # Talk about being
|
||||
span_2 = text[0:3] # Talk about being
|
||||
span_3 = text_var[0:3] # Talk of being
|
||||
token = y[0] # Let
|
||||
with pytest.warns(UserWarning):
|
||||
assert span.similarity(token) == 0.0
|
||||
assert span.similarity(span_2) == 1.0
|
||||
with pytest.warns(UserWarning):
|
||||
assert span_2.similarity(span_3) < 1.0
|
||||
|
||||
|
||||
def test_issue5458():
|
||||
# Test that the noun chuncker does not generate overlapping spans
|
||||
# fmt: off
|
||||
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
|
||||
vocab = Vocab(strings=words)
|
||||
deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
|
||||
pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
|
||||
heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0]
|
||||
# fmt: on
|
||||
en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps)
|
||||
en_doc.noun_chunks_iterator = noun_chunks
|
||||
|
||||
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
|
||||
nlp = English()
|
||||
merge_nps = nlp.create_pipe("merge_noun_chunks")
|
||||
merge_nps(en_doc)
|
|
@ -1,32 +0,0 @@
|
|||
import numpy
|
||||
from spacy.tokens import Doc
|
||||
from spacy.attrs import DEP, POS, TAG
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_issue5048(en_vocab):
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
pos_s = ["DET", "VERB", "DET", "NOUN"]
|
||||
spaces = [" ", " ", " ", ""]
|
||||
deps_s = ["dep", "adj", "nn", "atm"]
|
||||
tags_s = ["DT", "VBZ", "DT", "NN"]
|
||||
|
||||
strings = en_vocab.strings
|
||||
|
||||
for w in words:
|
||||
strings.add(w)
|
||||
deps = [strings.add(d) for d in deps_s]
|
||||
pos = [strings.add(p) for p in pos_s]
|
||||
tags = [strings.add(t) for t in tags_s]
|
||||
|
||||
attrs = [POS, DEP, TAG]
|
||||
array = numpy.array(list(zip(pos, deps, tags)), dtype="uint64")
|
||||
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
doc.from_array(attrs, array)
|
||||
v1 = [(token.text, token.pos_, token.tag_) for token in doc]
|
||||
|
||||
doc2 = get_doc(en_vocab, words=words, pos=pos_s, deps=deps_s, tags=tags_s)
|
||||
v2 = [(token.text, token.pos_, token.tag_) for token in doc2]
|
||||
assert v1 == v2
|
|
@ -1,37 +0,0 @@
|
|||
import numpy as np
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
def test_issue5082():
|
||||
# Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
|
||||
nlp = English()
|
||||
vocab = nlp.vocab
|
||||
array1 = np.asarray([0.1, 0.5, 0.8], dtype=np.float32)
|
||||
array2 = np.asarray([-0.2, -0.6, -0.9], dtype=np.float32)
|
||||
array3 = np.asarray([0.3, -0.1, 0.7], dtype=np.float32)
|
||||
array4 = np.asarray([0.5, 0, 0.3], dtype=np.float32)
|
||||
array34 = np.asarray([0.4, -0.05, 0.5], dtype=np.float32)
|
||||
|
||||
vocab.set_vector("I", array1)
|
||||
vocab.set_vector("like", array2)
|
||||
vocab.set_vector("David", array3)
|
||||
vocab.set_vector("Bowie", array4)
|
||||
|
||||
text = "I like David Bowie"
|
||||
patterns = [
|
||||
{"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
|
||||
]
|
||||
ruler = nlp.add_pipe("entity_ruler")
|
||||
ruler.add_patterns(patterns)
|
||||
parsed_vectors_1 = [t.vector for t in nlp(text)]
|
||||
assert len(parsed_vectors_1) == 4
|
||||
np.testing.assert_array_equal(parsed_vectors_1[0], array1)
|
||||
np.testing.assert_array_equal(parsed_vectors_1[1], array2)
|
||||
np.testing.assert_array_equal(parsed_vectors_1[2], array3)
|
||||
np.testing.assert_array_equal(parsed_vectors_1[3], array4)
|
||||
nlp.add_pipe("merge_entities")
|
||||
parsed_vectors_2 = [t.vector for t in nlp(text)]
|
||||
assert len(parsed_vectors_2) == 3
|
||||
np.testing.assert_array_equal(parsed_vectors_2[0], array1)
|
||||
np.testing.assert_array_equal(parsed_vectors_2[1], array2)
|
||||
np.testing.assert_array_equal(parsed_vectors_2[2], array34)
|
|
@ -1,32 +0,0 @@
|
|||
import spacy
|
||||
from spacy.language import Language
|
||||
from spacy.lang.en import English
|
||||
from spacy.tests.util import make_tempdir
|
||||
|
||||
|
||||
def test_issue5137():
|
||||
@Language.factory("my_component")
|
||||
class MyComponent:
|
||||
def __init__(self, nlp, name="my_component", categories="all_categories"):
|
||||
self.nlp = nlp
|
||||
self.categories = categories
|
||||
self.name = name
|
||||
|
||||
def __call__(self, doc):
|
||||
pass
|
||||
|
||||
def to_disk(self, path, **kwargs):
|
||||
pass
|
||||
|
||||
def from_disk(self, path, **cfg):
|
||||
pass
|
||||
|
||||
nlp = English()
|
||||
my_component = nlp.add_pipe("my_component")
|
||||
assert my_component.categories == "all_categories"
|
||||
|
||||
with make_tempdir() as tmpdir:
|
||||
nlp.to_disk(tmpdir)
|
||||
overrides = {"components": {"my_component": {"categories": "my_categories"}}}
|
||||
nlp2 = spacy.load(tmpdir, config=overrides)
|
||||
assert nlp2.get_pipe("my_component").categories == "my_categories"
|
|
@ -1,11 +0,0 @@
|
|||
from spacy.tokens import DocBin
|
||||
|
||||
|
||||
def test_issue5141(en_vocab):
|
||||
""" Ensure an empty DocBin does not crash on serialization """
|
||||
doc_bin = DocBin(attrs=["DEP", "HEAD"])
|
||||
assert list(doc_bin.get_docs(en_vocab)) == []
|
||||
doc_bin_bytes = doc_bin.to_bytes()
|
||||
|
||||
doc_bin_2 = DocBin().from_bytes(doc_bin_bytes)
|
||||
assert list(doc_bin_2.get_docs(en_vocab)) == []
|
|
@ -1,20 +0,0 @@
|
|||
from spacy.lang.en import English
|
||||
import pytest
|
||||
|
||||
|
||||
def test_issue5152():
|
||||
# Test that the comparison between a Span and a Token, goes well
|
||||
# There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
|
||||
nlp = English()
|
||||
text = nlp("Talk about being boring!")
|
||||
text_var = nlp("Talk of being boring!")
|
||||
y = nlp("Let")
|
||||
span = text[0:3] # Talk about being
|
||||
span_2 = text[0:3] # Talk about being
|
||||
span_3 = text_var[0:3] # Talk of being
|
||||
token = y[0] # Let
|
||||
with pytest.warns(UserWarning):
|
||||
assert span.similarity(token) == 0.0
|
||||
assert span.similarity(span_2) == 1.0
|
||||
with pytest.warns(UserWarning):
|
||||
assert span_2.similarity(span_3) < 1.0
|
|
@ -1,23 +0,0 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.lang.en.syntax_iterators import noun_chunks
|
||||
from spacy.tests.util import get_doc
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
|
||||
def test_issue5458():
|
||||
# Test that the noun chuncker does not generate overlapping spans
|
||||
# fmt: off
|
||||
words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
|
||||
vocab = Vocab(strings=words)
|
||||
dependencies = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
|
||||
pos_tags = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
|
||||
heads = [0, 1, -2, 6, 2, 1, -4, -1, -1, -2, -10]
|
||||
# fmt: on
|
||||
|
||||
en_doc = get_doc(vocab, words, pos_tags, heads, dependencies)
|
||||
en_doc.noun_chunks_iterator = noun_chunks
|
||||
|
||||
# if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
|
||||
nlp = English()
|
||||
merge_nps = nlp.create_pipe("merge_noun_chunks")
|
||||
merge_nps(en_doc)
|
|
@ -1,5 +1,6 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.pipeline import merge_entities
|
||||
import pytest
|
||||
|
||||
|
||||
def test_issue5918():
|
||||
|
@ -22,6 +23,7 @@ def test_issue5918():
|
|||
assert len(doc.ents) == 3
|
||||
# make it so that the third span's head is within the entity (ent_iob=I)
|
||||
# bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
|
||||
doc[29].head = doc[33]
|
||||
with pytest.warns(UserWarning):
|
||||
doc[29].head = doc[33]
|
||||
doc = merge_entities(doc)
|
||||
assert len(doc.ents) == 3
|
||||
|
|
|
@ -1,15 +1,13 @@
|
|||
import pytest
|
||||
from spacy import displacy
|
||||
from spacy.displacy.render import DependencyRenderer, EntityRenderer
|
||||
from spacy.tokens import Span
|
||||
from spacy.tokens import Span, Doc
|
||||
from spacy.lang.fa import Persian
|
||||
|
||||
from .util import get_doc
|
||||
|
||||
|
||||
def test_displacy_parse_ents(en_vocab):
|
||||
"""Test that named entities on a Doc are converted into displaCy's format."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
ents = displacy.parse_ents(doc)
|
||||
assert isinstance(ents, dict)
|
||||
|
@ -20,11 +18,11 @@ def test_displacy_parse_ents(en_vocab):
|
|||
def test_displacy_parse_deps(en_vocab):
|
||||
"""Test that deps and tags on a Doc are converted into displaCy's format."""
|
||||
words = ["This", "is", "a", "sentence"]
|
||||
heads = [1, 0, 1, -2]
|
||||
heads = [1, 1, 3, 1]
|
||||
pos = ["DET", "VERB", "DET", "NOUN"]
|
||||
tags = ["DT", "VBZ", "DT", "NN"]
|
||||
deps = ["nsubj", "ROOT", "det", "attr"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
|
||||
doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
|
||||
deps = displacy.parse_deps(doc)
|
||||
assert isinstance(deps, dict)
|
||||
assert deps["words"] == [
|
||||
|
@ -53,7 +51,7 @@ def test_displacy_invalid_arcs():
|
|||
|
||||
def test_displacy_spans(en_vocab):
|
||||
"""Test that displaCy can render Spans."""
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc[1:4], style="ent")
|
||||
assert html.startswith("<div")
|
||||
|
@ -70,9 +68,9 @@ def test_displacy_rtl():
|
|||
# These are (likely) wrong, but it's just for testing
|
||||
pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map
|
||||
deps = ["foo", "bar", "foo", "baz"]
|
||||
heads = [1, 0, 1, -2]
|
||||
heads = [1, 0, 3, 1]
|
||||
nlp = Persian()
|
||||
doc = get_doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
|
||||
doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
|
||||
doc.ents = [Span(doc, 1, 3, label="TEST")]
|
||||
html = displacy.render(doc, page=True, style="dep")
|
||||
assert "direction: rtl" in html
|
||||
|
@ -90,7 +88,7 @@ def test_displacy_render_wrapper(en_vocab):
|
|||
return "TEST" + html + "TEST"
|
||||
|
||||
displacy.set_render_wrapper(wrapper)
|
||||
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
|
||||
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
|
||||
html = displacy.render(doc, style="ent")
|
||||
assert html.startswith("TEST<div")
|
||||
|
|
|
@ -5,7 +5,6 @@ from spacy.training import Example
|
|||
from spacy.training.iob_utils import biluo_tags_from_offsets
|
||||
from spacy.scorer import Scorer, ROCAUCScore
|
||||
from spacy.scorer import _roc_auc_score, _roc_curve
|
||||
from .util import get_doc
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
@ -137,11 +136,8 @@ def test_las_per_type(en_vocab):
|
|||
scorer = Scorer()
|
||||
examples = []
|
||||
for input_, annot in test_las_apple:
|
||||
doc = get_doc(
|
||||
en_vocab,
|
||||
words=input_.split(" "),
|
||||
heads=([h - i for i, h in enumerate(annot["heads"])]),
|
||||
deps=annot["deps"],
|
||||
doc = Doc(
|
||||
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"],
|
||||
)
|
||||
gold = {"heads": annot["heads"], "deps": annot["deps"]}
|
||||
example = Example.from_dict(doc, gold)
|
||||
|
@ -161,11 +157,8 @@ def test_las_per_type(en_vocab):
|
|||
scorer = Scorer()
|
||||
examples = []
|
||||
for input_, annot in test_las_apple:
|
||||
doc = get_doc(
|
||||
en_vocab,
|
||||
words=input_.split(" "),
|
||||
heads=([h - i for i, h in enumerate(annot["heads"])]),
|
||||
deps=annot["deps"],
|
||||
doc = Doc(
|
||||
en_vocab, words=input_.split(" "), heads=annot["heads"], deps=annot["deps"],
|
||||
)
|
||||
gold = {"heads": annot["heads"], "deps": annot["deps"]}
|
||||
doc[0].dep_ = "compound"
|
||||
|
@ -188,10 +181,10 @@ def test_ner_per_type(en_vocab):
|
|||
scorer = Scorer()
|
||||
examples = []
|
||||
for input_, annot in test_ner_cardinal:
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
en_vocab,
|
||||
words=input_.split(" "),
|
||||
ents=[[0, 1, "CARDINAL"], [2, 3, "CARDINAL"]],
|
||||
ents=[("CARDINAL", 0, 1), ("CARDINAL", 2, 3)],
|
||||
)
|
||||
entities = biluo_tags_from_offsets(doc, annot["entities"])
|
||||
example = Example.from_dict(doc, {"entities": entities})
|
||||
|
@ -213,10 +206,10 @@ def test_ner_per_type(en_vocab):
|
|||
scorer = Scorer()
|
||||
examples = []
|
||||
for input_, annot in test_ner_apple:
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
en_vocab,
|
||||
words=input_.split(" "),
|
||||
ents=[[0, 1, "ORG"], [5, 6, "GPE"], [6, 7, "ORG"]],
|
||||
ents=[("ORG", 0, 1), ("GPE", 5, 6), ("ORG", 6, 7)],
|
||||
)
|
||||
entities = biluo_tags_from_offsets(doc, annot["entities"])
|
||||
example = Example.from_dict(doc, {"entities": entities})
|
||||
|
|
|
@ -12,13 +12,14 @@ from thinc.api import compounding
|
|||
import pytest
|
||||
import srsly
|
||||
|
||||
from ..util import make_tempdir, get_doc
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc():
|
||||
def doc(en_vocab):
|
||||
nlp = English() # make sure we get a new vocab every time
|
||||
# fmt: off
|
||||
text = "Sarah's sister flew to Silicon Valley via London."
|
||||
words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
|
||||
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
|
||||
pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
|
||||
morphs = ["NounType=prop|Number=sing", "Poss=yes", "Number=sing", "Tense=past|VerbForm=fin",
|
||||
|
@ -26,15 +27,12 @@ def doc():
|
|||
"NounType=prop|Number=sing", "PunctType=peri"]
|
||||
# head of '.' is intentionally nonprojective for testing
|
||||
heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
|
||||
heads = [head - i for i, head in enumerate(heads)]
|
||||
deps = ["poss", "case", "nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
|
||||
lemmas = ["Sarah", "'s", "sister", "fly", "to", "Silicon", "Valley", "via", "London", "."]
|
||||
ents = ((0, 2, "PERSON"), (5, 7, "LOC"), (8, 9, "GPE"))
|
||||
ents = (("PERSON", 0, 2), ("LOC", 5, 7), ("GPE", 8, 9))
|
||||
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
|
||||
# fmt: on
|
||||
nlp = English()
|
||||
words = [t.text for t in nlp.make_doc(text)]
|
||||
doc = get_doc(
|
||||
doc = Doc(
|
||||
nlp.vocab,
|
||||
words=words,
|
||||
tags=tags,
|
||||
|
@ -212,41 +210,24 @@ def test_json2docs_no_ner(en_vocab):
|
|||
|
||||
|
||||
def test_split_sentences(en_vocab):
|
||||
# fmt: off
|
||||
words = ["I", "flew", "to", "San Francisco Valley", "had", "loads of fun"]
|
||||
doc = Doc(en_vocab, words=words)
|
||||
gold_words = [
|
||||
"I",
|
||||
"flew",
|
||||
"to",
|
||||
"San",
|
||||
"Francisco",
|
||||
"Valley",
|
||||
"had",
|
||||
"loads",
|
||||
"of",
|
||||
"fun",
|
||||
]
|
||||
gold_words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of", "fun"]
|
||||
sent_starts = [True, False, False, False, False, False, True, False, False, False]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
|
||||
assert example.text == "I flew to San Francisco Valley had loads of fun "
|
||||
split_examples = example.split_sents()
|
||||
assert len(split_examples) == 2
|
||||
assert split_examples[0].text == "I flew to San Francisco Valley "
|
||||
assert split_examples[1].text == "had loads of fun "
|
||||
|
||||
# fmt: off
|
||||
words = ["I", "flew", "to", "San", "Francisco", "Valley", "had", "loads", "of fun"]
|
||||
doc = Doc(en_vocab, words=words)
|
||||
gold_words = [
|
||||
"I",
|
||||
"flew",
|
||||
"to",
|
||||
"San Francisco",
|
||||
"Valley",
|
||||
"had",
|
||||
"loads of",
|
||||
"fun",
|
||||
]
|
||||
gold_words = ["I", "flew", "to", "San Francisco", "Valley", "had", "loads of", "fun"]
|
||||
sent_starts = [True, False, False, False, False, True, False, False]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
example = Example.from_dict(doc, {"words": gold_words, "sent_starts": sent_starts})
|
||||
assert example.text == "I flew to San Francisco Valley had loads of fun "
|
||||
split_examples = example.split_sents()
|
||||
|
@ -479,7 +460,6 @@ def test_roundtrip_docs_to_docbin(doc):
|
|||
heads = [t.head.i for t in doc]
|
||||
cats = doc.cats
|
||||
ents = [(e.start_char, e.end_char, e.label_) for e in doc.ents]
|
||||
|
||||
# roundtrip to DocBin
|
||||
with make_tempdir() as tmpdir:
|
||||
# use a separate vocab to test that all labels are added
|
||||
|
@ -600,7 +580,6 @@ def test_tuple_format_implicit():
|
|||
|
||||
def test_tuple_format_implicit_invalid():
|
||||
"""Test that an error is thrown for an implicit invalid field"""
|
||||
|
||||
train_data = [
|
||||
("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
|
||||
(
|
||||
|
@ -609,7 +588,6 @@ def test_tuple_format_implicit_invalid():
|
|||
),
|
||||
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
|
||||
]
|
||||
|
||||
with pytest.raises(KeyError):
|
||||
_train_tuples(train_data)
|
||||
|
||||
|
@ -619,11 +597,9 @@ def _train_tuples(train_data):
|
|||
ner = nlp.add_pipe("ner")
|
||||
ner.add_label("ORG")
|
||||
ner.add_label("LOC")
|
||||
|
||||
train_examples = []
|
||||
for t in train_data:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
|
||||
optimizer = nlp.begin_training()
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
|
@ -639,17 +615,14 @@ def test_split_sents(merged_dict):
|
|||
merged_dict,
|
||||
)
|
||||
assert example.text == "Hi there everyone It is just me"
|
||||
|
||||
split_examples = example.split_sents()
|
||||
assert len(split_examples) == 2
|
||||
assert split_examples[0].text == "Hi there everyone "
|
||||
assert split_examples[1].text == "It is just me"
|
||||
|
||||
token_annotation_1 = split_examples[0].to_dict()["token_annotation"]
|
||||
assert token_annotation_1["ORTH"] == ["Hi", "there", "everyone"]
|
||||
assert token_annotation_1["TAG"] == ["INTJ", "ADV", "PRON"]
|
||||
assert token_annotation_1["SENT_START"] == [1, 0, 0]
|
||||
|
||||
token_annotation_2 = split_examples[1].to_dict()["token_annotation"]
|
||||
assert token_annotation_2["ORTH"] == ["It", "is", "just", "me"]
|
||||
assert token_annotation_2["TAG"] == ["PRON", "AUX", "ADV", "PRON"]
|
||||
|
|
|
@ -2,11 +2,7 @@ import numpy
|
|||
import tempfile
|
||||
import contextlib
|
||||
import srsly
|
||||
|
||||
from spacy import Errors
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.attrs import POS, TAG, HEAD, DEP, LEMMA, MORPH
|
||||
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.util import make_tempdir # noqa: F401
|
||||
|
||||
|
@ -18,35 +14,6 @@ def make_tempfile(mode="r"):
|
|||
f.close()
|
||||
|
||||
|
||||
def get_doc(
|
||||
vocab,
|
||||
words=[],
|
||||
pos=None,
|
||||
heads=None,
|
||||
deps=None,
|
||||
tags=None,
|
||||
ents=None,
|
||||
lemmas=None,
|
||||
morphs=None,
|
||||
):
|
||||
"""Create Doc object from given vocab, words and annotations."""
|
||||
if heads is not None:
|
||||
heads = [i + head for i, head in enumerate(heads)]
|
||||
if ents is not None:
|
||||
ents = [(vocab.strings[ent_type], start, end) for start, end, ent_type in ents]
|
||||
return Doc(
|
||||
vocab,
|
||||
words=words,
|
||||
pos=pos,
|
||||
heads=heads,
|
||||
deps=deps,
|
||||
tags=tags,
|
||||
ents=ents,
|
||||
lemmas=lemmas,
|
||||
morphs=morphs,
|
||||
)
|
||||
|
||||
|
||||
def get_batch(batch_size):
|
||||
vocab = Vocab()
|
||||
docs = []
|
||||
|
|
|
@ -200,8 +200,8 @@ cdef class Doc:
|
|||
sent_starts (Optional[List[Union[bool, None]]]): A list of values, of
|
||||
the same length as words, to assign as token.is_sent_start. Will be
|
||||
overridden by heads if heads is provided. Defaults to None.
|
||||
ents (Optional[List[Span]]): A list of spans to assign as doc.ents.
|
||||
Defaults to None.
|
||||
ents (Optional[List[Tuple[Union[str, int], int, int]]]): A list of
|
||||
(label, start, end) tuples to assign as doc.ents. Defaults to None.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/doc#init
|
||||
"""
|
||||
|
@ -665,7 +665,7 @@ cdef class Doc:
|
|||
cdef attr_t kb_id
|
||||
cdef int ent_start, ent_end
|
||||
for ent_info in ents:
|
||||
entity_type, kb_id, ent_start, ent_end = get_entity_info(ent_info)
|
||||
entity_type, kb_id, ent_start, ent_end = get_entity_info(ent_info, self.vocab)
|
||||
for token_index in range(ent_start, ent_end):
|
||||
if token_index in tokens_in_ents.keys():
|
||||
raise ValueError(Errors.E103.format(
|
||||
|
@ -1583,7 +1583,7 @@ def fix_attributes(doc, attributes):
|
|||
attributes[ENT_TYPE] = attributes["ent_type"]
|
||||
|
||||
|
||||
def get_entity_info(ent_info):
|
||||
def get_entity_info(ent_info, vocab):
|
||||
if isinstance(ent_info, Span):
|
||||
ent_type = ent_info.label
|
||||
ent_kb_id = ent_info.kb_id
|
||||
|
@ -1596,4 +1596,6 @@ def get_entity_info(ent_info):
|
|||
ent_type, ent_kb_id, start, end = ent_info
|
||||
else:
|
||||
ent_id, ent_kb_id, ent_type, start, end = ent_info
|
||||
if isinstance(ent_type, str):
|
||||
ent_type = vocab.strings.add(ent_type)
|
||||
return ent_type, ent_kb_id, start, end
|
||||
|
|
|
@ -172,7 +172,7 @@ cdef class Example:
|
|||
return output
|
||||
|
||||
def get_aligned_ner(self):
|
||||
if not self.y.is_nered:
|
||||
if not self.y.has_annotation("ENT_IOB"):
|
||||
return [None] * len(self.x) # should this be 'missing' instead of 'None' ?
|
||||
x_ents = self.get_aligned_spans_y2x(self.y.ents)
|
||||
# Default to 'None' for missing values
|
||||
|
@ -221,7 +221,7 @@ cdef class Example:
|
|||
def split_sents(self):
|
||||
""" Split the token annotations into multiple Examples based on
|
||||
sent_starts and return a list of the new Examples"""
|
||||
if not self.reference.is_sentenced:
|
||||
if not self.reference.has_annotation("SENT_START"):
|
||||
return [self]
|
||||
|
||||
align = self.alignment.y2x
|
||||
|
|
|
@ -25,26 +25,27 @@ Construct a `Doc` object. The most common way to get a `Doc` object is via the
|
|||
>
|
||||
> # Construction 2
|
||||
> from spacy.tokens import Doc
|
||||
>
|
||||
> words = ["hello", "world", "!"]
|
||||
> spaces = [True, False, False]
|
||||
> doc = Doc(nlp.vocab, words=words, spaces=spaces)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
|
||||
| `words` | A list of strings to add to the container. ~~Optional[List[str]]~~ |
|
||||
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
|
||||
| tags | A list of strings, of the same length as words, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| pos | A list of strings, of the same length as words, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| morphs | A list of strings, of the same length as words, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| lemmas | A list of strings, of the same length as words, to assign as `token.lemma` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| heads | A list of values, of the same length as words, to assign as the head for each word. Head indices are the absolute position of the head in the doc. Defaults to `None`. ~~Optional[List[int]]~~ |
|
||||
| deps | A list of strings, of the same length as words, to assign as `token.dep` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| sent_starts | A list of values, of the same length as words, to assign as token.is_sent_start. Will be overridden by heads if heads is provided. Defaults to `None`. ~~Optional[List[Union[bool, None]]~~ |
|
||||
| ents | A list of spans to assign as doc.ents. Defaults to `None`. ~~Optional[List[Span]]~~ |
|
||||
| Name | Description |
|
||||
| ---------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
|
||||
| `words` | A list of strings to add to the container. ~~Optional[List[str]]~~ |
|
||||
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
|
||||
| `tags` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `pos` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `morphs` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `lemmas` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.lemma` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `heads` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as the head for each word. Head indices are the absolute position of the head in the `Doc`. Defaults to `None`. ~~Optional[List[int]]~~ |
|
||||
| `deps` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.dep` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `sent_starts` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as `token.is_sent_start`. Will be overridden by heads if `heads` is provided. Defaults to `None`. ~~Optional[List[Union[bool, None]]~~ |
|
||||
| `ents` <Tag variant="new">3</Tag> | A list of `(label, start, end)` tuples to assign as `doc.ents`. Note that the `start` and `end` indices here refer to the token indices. Defaults to `None`. ~~Optional[List[Tuple[Union[str, int], int, int]]]~~ |
|
||||
|
||||
## Doc.\_\_getitem\_\_ {#getitem tag="method"}
|
||||
|
||||
|
@ -281,6 +282,19 @@ ancestor is found, e.g. if span excludes a necessary ancestor.
|
|||
|
||||
Check whether the doc contains annotation on a token attribute.
|
||||
|
||||
<Infobox title="Changed in v3.0" variant="warning">
|
||||
|
||||
This method replaces the previous boolean attributes like `Doc.is_tagged`,
|
||||
`Doc.is_parsed` or `Doc.is_sentenced`.
|
||||
|
||||
```diff
|
||||
doc = nlp("This is a text")
|
||||
- assert doc.is_parsed
|
||||
+ assert doc.has_annotation("DEP")
|
||||
```
|
||||
|
||||
</Infobox>
|
||||
|
||||
| Name | Description |
|
||||
| ------------------ | --------------------------------------------------------------------------------------------------- |
|
||||
| `attr` | The attribute string name or int ID. ~~Union[int, str]~~ |
|
||||
|
|
|
@ -530,6 +530,8 @@ Note that spaCy v3.0 now requires **Python 3.6+**.
|
|||
[`PhraseMatcher.add`](/api/phrasematcher#add) now only accept a list of
|
||||
patterns as the second argument (instead of a variable number of arguments).
|
||||
The `on_match` callback becomes an optional keyword argument.
|
||||
- The `Doc` flags like `Doc.is_parsed` or `Doc.is_tagged` have been replaced by
|
||||
[`Doc.has_annotation`](/api/doc#has_annotation).
|
||||
- The `spacy.gold` module has been renamed to
|
||||
[`spacy.training`](%%GITHUB_SPACY/spacy/training).
|
||||
- The `PRON_LEMMA` symbol and `-PRON-` as an indicator for pronoun lemmas has
|
||||
|
@ -807,10 +809,11 @@ nlp = spacy.blank("en")
|
|||
|
||||
### Migrating Doc flags {#migrating-doc-flags}
|
||||
|
||||
The `Doc` flags `Doc.is_tagged`, `Doc.is_parsed`, `Doc.is_nered` and
|
||||
`Doc.is_sentenced` are deprecated in v3 and replaced by
|
||||
The [`Doc`](/api/doc) flags `Doc.is_tagged`, `Doc.is_parsed`, `Doc.is_nered` and
|
||||
`Doc.is_sentenced` are deprecated in v3.0 and replaced by
|
||||
[`Doc.has_annotation`](/api/doc#has_annotation) method, which refers to the
|
||||
token attribute symbols (the same symbols used in `Matcher` patterns):
|
||||
token attribute symbols (the same symbols used in [`Matcher`](/api/matcher)
|
||||
patterns):
|
||||
|
||||
```diff
|
||||
doc = nlp(text)
|
||||
|
|
Loading…
Reference in New Issue
Block a user