diff --git a/requirements.txt b/requirements.txt index 02479f946..5c49f8d29 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ # Our libraries -spacy-legacy>=3.0.10,<3.1.0 +spacy-legacy>=3.0.11,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 diff --git a/setup.cfg b/setup.cfg index 4a8c350cd..82f5ee085 100644 --- a/setup.cfg +++ b/setup.cfg @@ -22,6 +22,7 @@ classifiers = Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.9 Programming Language :: Python :: 3.10 + Programming Language :: Python :: 3.11 Topic :: Scientific/Engineering project_urls = Release notes = https://github.com/explosion/spaCy/releases @@ -33,7 +34,7 @@ include_package_data = true python_requires = >=3.6 install_requires = # Our libraries - spacy-legacy>=3.0.10,<3.1.0 + spacy-legacy>=3.0.11,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 diff --git a/spacy/cli/apply.py b/spacy/cli/apply.py index 9d170bc95..f0df4e757 100644 --- a/spacy/cli/apply.py +++ b/spacy/cli/apply.py @@ -53,9 +53,7 @@ def _stream_jsonl(path: Path, field: str) -> Iterable[str]: """ for entry in srsly.read_jsonl(path): if field not in entry: - msg.fail( - f"{path} does not contain the required '{field}' field.", exits=1 - ) + msg.fail(f"{path} does not contain the required '{field}' field.", exits=1) else: yield entry[field] @@ -118,8 +116,10 @@ def apply( paths = walk_directory(data_path) if len(paths) == 0: docbin.to_disk(output_file) - msg.warn("Did not find data to process," - f" {data_path} seems to be an empty directory.") + msg.warn( + "Did not find data to process," + f" {data_path} seems to be an empty directory." + ) return nlp = load_model(model) msg.good(f"Loaded model {model}") diff --git a/spacy/errors.py b/spacy/errors.py index e800be1fa..1f3bcee14 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -944,6 +944,7 @@ class Errors(metaclass=ErrorsWithCodes): E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default " "knowledge base, use `InMemoryLookupKB`.") E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.") + E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}") # v4 error strings E4000 = ("Expected a Doc as input, but got: '{type}'") diff --git a/spacy/pipeline/span_ruler.py b/spacy/pipeline/span_ruler.py index e39b89073..0641d9c7d 100644 --- a/spacy/pipeline/span_ruler.py +++ b/spacy/pipeline/span_ruler.py @@ -179,7 +179,7 @@ def prioritize_existing_ents_filter( @registry.misc("spacy.prioritize_existing_ents_filter.v1") -def make_preverse_existing_ents_filter(): +def make_preserve_existing_ents_filter(): return prioritize_existing_ents_filter diff --git a/spacy/pipeline/textcat.py b/spacy/pipeline/textcat.py index 3c6732233..f00e5a96d 100644 --- a/spacy/pipeline/textcat.py +++ b/spacy/pipeline/textcat.py @@ -77,7 +77,7 @@ subword_features = true default_config={ "threshold": 0.0, "model": DEFAULT_SINGLE_TEXTCAT_MODEL, - "scorer": {"@scorers": "spacy.textcat_scorer.v1"}, + "scorer": {"@scorers": "spacy.textcat_scorer.v2"}, "save_activations": False, }, default_score_weights={ @@ -130,7 +130,7 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]: ) -@registry.scorers("spacy.textcat_scorer.v1") +@registry.scorers("spacy.textcat_scorer.v2") def make_textcat_scorer(): return textcat_score diff --git a/spacy/tests/pipeline/test_textcat.py b/spacy/tests/pipeline/test_textcat.py index 931e7b322..942062d1d 100644 --- a/spacy/tests/pipeline/test_textcat.py +++ b/spacy/tests/pipeline/test_textcat.py @@ -934,3 +934,22 @@ def test_save_activations_multi(): doc = nlp("This is a test.") assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"] assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,) + + +@pytest.mark.parametrize( + "component_name,scorer", [("textcat", "spacy.textcat_scorer.v1")] +) +def test_textcat_legacy_scorers(component_name, scorer): + """Check that legacy scorers are registered and produce the expected score + keys.""" + nlp = English() + nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}}) + + train_examples = [] + for text, annotations in TRAIN_DATA_SINGLE_LABEL: + train_examples.append(Example.from_dict(nlp.make_doc(text), annotations)) + nlp.initialize(get_examples=lambda: train_examples) + + # score the model (it's not actually trained but that doesn't matter) + scores = nlp.evaluate(train_examples) + assert 0 <= scores["cats_score"] <= 1 diff --git a/spacy/training/loggers.py b/spacy/training/loggers.py index 408ea7140..7de31822e 100644 --- a/spacy/training/loggers.py +++ b/spacy/training/loggers.py @@ -26,6 +26,8 @@ def setup_table( return final_cols, final_widths, ["r" for _ in final_widths] +# We cannot rename this method as it's directly imported +# and used by external packages such as spacy-loggers. @registry.loggers("spacy.ConsoleLogger.v2") def console_logger( progress_bar: bool = False, @@ -33,7 +35,27 @@ def console_logger( output_file: Optional[Union[str, Path]] = None, ): """The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file. - progress_bar (bool): Whether the logger should print the progress bar. + progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass. + console_output (bool): Whether the logger should print the logs on the console. + output_file (Optional[Union[str, Path]]): The file to save the training logs to. + """ + return console_logger_v3( + progress_bar=None if progress_bar is False else "eval", + console_output=console_output, + output_file=output_file, + ) + + +@registry.loggers("spacy.ConsoleLogger.v3") +def console_logger_v3( + progress_bar: Optional[str] = None, + console_output: bool = True, + output_file: Optional[Union[str, Path]] = None, +): + """The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file. + progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values: + train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached). + eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached). console_output (bool): Whether the logger should print the logs on the console. output_file (Optional[Union[str, Path]]): The file to save the training logs to. """ @@ -70,6 +92,7 @@ def console_logger( for name, proc in nlp.pipeline if hasattr(proc, "is_trainable") and proc.is_trainable ] + max_steps = nlp.config["training"]["max_steps"] eval_frequency = nlp.config["training"]["eval_frequency"] score_weights = nlp.config["training"]["score_weights"] score_cols = [col for col, value in score_weights.items() if value is not None] @@ -84,6 +107,13 @@ def console_logger( write(msg.row(table_header, widths=table_widths, spacing=spacing)) write(msg.row(["-" * width for width in table_widths], spacing=spacing)) progress = None + expected_progress_types = ("train", "eval") + if progress_bar is not None and progress_bar not in expected_progress_types: + raise ValueError( + Errors.E1048.format( + unexpected=progress_bar, expected=expected_progress_types + ) + ) def log_step(info: Optional[Dict[str, Any]]) -> None: nonlocal progress @@ -141,11 +171,23 @@ def console_logger( ) ) if progress_bar: + if progress_bar == "train": + total = max_steps + desc = f"Last Eval Epoch: {info['epoch']}" + initial = info["step"] + else: + total = eval_frequency + desc = f"Epoch {info['epoch']+1}" + initial = 0 # Set disable=None, so that it disables on non-TTY progress = tqdm.tqdm( - total=eval_frequency, disable=None, leave=False, file=stderr + total=total, + disable=None, + leave=False, + file=stderr, + initial=initial, ) - progress.set_description(f"Epoch {info['epoch']+1}") + progress.set_description(desc) def finalize() -> None: if output_stream: diff --git a/website/docs/api/top-level.md b/website/docs/api/top-level.md index 26a5d42f4..883c5e3b9 100644 --- a/website/docs/api/top-level.md +++ b/website/docs/api/top-level.md @@ -513,7 +513,7 @@ a [Weights & Biases](https://www.wandb.com/) dashboard. Instead of using one of the built-in loggers, you can [implement your own](/usage/training#custom-logging). -#### spacy.ConsoleLogger.v2 {#ConsoleLogger tag="registered function"} +#### spacy.ConsoleLogger.v2 {tag="registered function"} > #### Example config > @@ -564,11 +564,33 @@ start decreasing across epochs. -| Name | Description | -| ---------------- | --------------------------------------------------------------------- | -| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ | -| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ | -| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ | +| Name | Description | +| ---------------- | ---------------------------------------------------------------------------------------------------------------------------- | +| `progress_bar` | Whether the logger should print a progress bar tracking the steps till the next evaluation pass (default: `False`). ~~bool~~ | +| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ | +| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ | + +#### spacy.ConsoleLogger.v3 {#ConsoleLogger tag="registered function"} + +> #### Example config +> +> ```ini +> [training.logger] +> @loggers = "spacy.ConsoleLogger.v3" +> progress_bar = "all_steps" +> console_output = true +> output_file = "training_log.jsonl" +> ``` + +Writes the results of a training step to the console in a tabular format and +optionally saves them to a `jsonl` file. + +| Name | Description | +| ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `progress_bar` | Type of progress bar to show in the console: `"train"`, `"eval"` or `None`. | +| | The bar tracks the number of steps until `training.max_steps` and `training.eval_frequency` are reached respectively (default: `None`). ~~Optional[str]~~ | +| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ | +| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ | ## Readers {#readers} diff --git a/website/meta/universe.json b/website/meta/universe.json index 84314328d..7c2bb98b7 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -4066,6 +4066,33 @@ "author_links": { "github": "yasufumy" } + }, + { + "id": "spacy-pythainlp", + "title": "spaCy-PyThaiNLP", + "slogan": "PyThaiNLP for spaCy", + "description": "This package wraps the PyThaiNLP library to add support for Thai to spaCy.", + "github": "PyThaiNLP/spaCy-PyThaiNLP", + "code_example": [ + "import spacy", + "import spacy_pythainlp.core", + "", + "nlp = spacy.blank('th')", + "nlp.add_pipe('pythainlp')", + "doc = nlp('ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน ผมอยากไปเที่ยว')", + "", + "print(list(doc.sents))", + "# output: [ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน , ผมอยากไปเที่ยว]" + ], + "code_language": "python", + "author": "Wannaphong Phatthiyaphaibun", + "author_links": { + "twitter": "@wannaphong_p", + "github": "wannaphong", + "website": "https://iam.wannaphong.com/" + }, + "category": ["pipeline", "research"], + "tags": ["Thai"] } ],