mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
Move Entity Linker v1 to spacy-legacy (#12006)
* Move Entity Linker v1 component to spacy-legacy This is a follow up to #11889 that moves the component instead of removing it. In general, we never import from spacy-legacy in spaCy proper. However, to use this component, that kind of import will be necessary. I was able to test this without issues, but is this current import strategy acceptable? Or should we put the component in a registry? * Use spacy-legacy pr for CI This will need to be reverted before merging. * Add temporary step to log installed spacy-legacy version * Modify requirements.txt to trigger tests * Add comment to Python to trigger tests * TODO REVERT This is a commit with logic changes to trigger tests * Remove pipe from YAML Works locally, but possibly this is causing a quoting error or something. * Revert "TODO REVERT This is a commit with logic changes to trigger tests" This reverts commit689fae71f3
. * Revert "Add comment to Python to trigger tests" This reverts commit11840fc598
. * Add more logging * Try installing directly in workflow * Try explicitly uninstalling spacy-legacy first * Cat requirements.txt to confirm contents In the branch, the thinc version spec is `thinc>=8.1.0,<8.2.0`. But in the logs, it's clear that a development release of 9.0 is being installed. It's not clear why that would happen. * Log requirements at start of build * TODO REVERT Change thinc spec Want to see what happens to the installed thinc spec with this change. * Update thinc requirements This makes it the same as it was before the merge, >=8.1.0,<8.2.0. * Use same thinc version as v4 branch * TODO REVERT Mark dependency check as xfail spacy-legacy is specified as a git checkout in requirements.txt while this PR is in progress, which makes the consistency check here fail. * Remove debugging output / install step * Revert "Remove debugging output / install step" This reverts commit923ea7448b
. * Clean up debugging output The manual install step with the URL fragment seems to have caused issues on Windows due to the = in the URL being misinterpreted. On the other hand, removing it seems to mean the git version of spacy-legacy isn't actually installed. This PR removes the URL fragment but keeps the direct command-line install. Additionally, since it looks like this job is configured to use the default shell (and not bash), it removes a comment that upsets the Windows cmd shell. * Revert "TODO REVERT Mark dependency check as xfail" This reverts commitd4863ec156
. * Fix requirements.txt, increasing spacy-legacy version * Raise spacy legacy version in setup.cfg * Remove azure build workarounds * make spacy-legacy version explicit in error message * Remove debugging line * Suggestions from code review
This commit is contained in:
parent
360ccf628a
commit
6920fb7baf
|
@ -13,7 +13,6 @@ from ..kb import KnowledgeBase, Candidate
|
||||||
from ..ml import empty_kb
|
from ..ml import empty_kb
|
||||||
from ..tokens import Doc, Span
|
from ..tokens import Doc, Span
|
||||||
from .pipe import deserialize_config
|
from .pipe import deserialize_config
|
||||||
from .legacy.entity_linker import EntityLinker_v1
|
|
||||||
from .trainable_pipe import TrainablePipe
|
from .trainable_pipe import TrainablePipe
|
||||||
from ..language import Language
|
from ..language import Language
|
||||||
from ..vocab import Vocab
|
from ..vocab import Vocab
|
||||||
|
@ -120,6 +119,12 @@ def make_entity_linker(
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not model.attrs.get("include_span_maker", False):
|
if not model.attrs.get("include_span_maker", False):
|
||||||
|
try:
|
||||||
|
from spacy_legacy.components.entity_linker import EntityLinker_v1
|
||||||
|
except:
|
||||||
|
raise ImportError(
|
||||||
|
"In order to use v1 of the EntityLinker, you must use spacy-legacy>=3.0.12."
|
||||||
|
)
|
||||||
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
|
||||||
return EntityLinker_v1(
|
return EntityLinker_v1(
|
||||||
nlp.vocab,
|
nlp.vocab,
|
||||||
|
|
|
@ -1,3 +0,0 @@
|
||||||
from .entity_linker import EntityLinker_v1
|
|
||||||
|
|
||||||
__all__ = ["EntityLinker_v1"]
|
|
|
@ -1,422 +0,0 @@
|
||||||
# This file is present to provide a prior version of the EntityLinker component
|
|
||||||
# for backwards compatability. For details see #9669.
|
|
||||||
|
|
||||||
from typing import Optional, Iterable, Callable, Dict, Union, List, Any
|
|
||||||
from thinc.types import Floats2d
|
|
||||||
from pathlib import Path
|
|
||||||
from itertools import islice
|
|
||||||
import srsly
|
|
||||||
import random
|
|
||||||
from thinc.api import CosineDistance, Model, Optimizer
|
|
||||||
from thinc.api import set_dropout_rate
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
from ...kb import KnowledgeBase, Candidate
|
|
||||||
from ...ml import empty_kb
|
|
||||||
from ...tokens import Doc, Span
|
|
||||||
from ..pipe import deserialize_config
|
|
||||||
from ..trainable_pipe import TrainablePipe
|
|
||||||
from ...language import Language
|
|
||||||
from ...vocab import Vocab
|
|
||||||
from ...training import Example, validate_examples, validate_get_examples
|
|
||||||
from ...errors import Errors, Warnings
|
|
||||||
from ...util import SimpleFrozenList
|
|
||||||
from ... import util
|
|
||||||
from ...scorer import Scorer
|
|
||||||
|
|
||||||
# See #9050
|
|
||||||
BACKWARD_OVERWRITE = True
|
|
||||||
|
|
||||||
|
|
||||||
def entity_linker_score(examples, **kwargs):
|
|
||||||
return Scorer.score_links(examples, negative_labels=[EntityLinker_v1.NIL], **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class EntityLinker_v1(TrainablePipe):
|
|
||||||
"""Pipeline component for named entity linking.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker
|
|
||||||
"""
|
|
||||||
|
|
||||||
NIL = "NIL" # string used to refer to a non-existing link
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab: Vocab,
|
|
||||||
model: Model,
|
|
||||||
name: str = "entity_linker",
|
|
||||||
*,
|
|
||||||
labels_discard: Iterable[str],
|
|
||||||
n_sents: int,
|
|
||||||
incl_prior: bool,
|
|
||||||
incl_context: bool,
|
|
||||||
entity_vector_length: int,
|
|
||||||
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
|
|
||||||
overwrite: bool = BACKWARD_OVERWRITE,
|
|
||||||
scorer: Optional[Callable] = entity_linker_score,
|
|
||||||
) -> None:
|
|
||||||
"""Initialize an entity linker.
|
|
||||||
|
|
||||||
vocab (Vocab): The shared vocabulary.
|
|
||||||
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
||||||
name (str): The component instance name, used to add entries to the
|
|
||||||
losses during training.
|
|
||||||
labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
|
|
||||||
n_sents (int): The number of neighbouring sentences to take into account.
|
|
||||||
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
|
|
||||||
incl_context (bool): Whether or not to include the local context in the model.
|
|
||||||
entity_vector_length (int): Size of encoding vectors in the KB.
|
|
||||||
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
|
|
||||||
produces a list of candidates, given a certain knowledge base and a textual mention.
|
|
||||||
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#init
|
|
||||||
"""
|
|
||||||
self.vocab = vocab
|
|
||||||
self.model = model
|
|
||||||
self.name = name
|
|
||||||
self.labels_discard = list(labels_discard)
|
|
||||||
self.n_sents = n_sents
|
|
||||||
self.incl_prior = incl_prior
|
|
||||||
self.incl_context = incl_context
|
|
||||||
self.get_candidates = get_candidates
|
|
||||||
self.cfg: Dict[str, Any] = {"overwrite": overwrite}
|
|
||||||
self.distance = CosineDistance(normalize=False)
|
|
||||||
# how many neighbour sentences to take into account
|
|
||||||
# create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'.
|
|
||||||
self.kb = empty_kb(entity_vector_length)(self.vocab)
|
|
||||||
self.scorer = scorer
|
|
||||||
|
|
||||||
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
|
|
||||||
"""Define the KB of this pipe by providing a function that will
|
|
||||||
create it using this object's vocab."""
|
|
||||||
if not callable(kb_loader):
|
|
||||||
raise ValueError(Errors.E885.format(arg_type=type(kb_loader)))
|
|
||||||
|
|
||||||
self.kb = kb_loader(self.vocab)
|
|
||||||
|
|
||||||
def validate_kb(self) -> None:
|
|
||||||
# Raise an error if the knowledge base is not initialized.
|
|
||||||
if self.kb is None:
|
|
||||||
raise ValueError(Errors.E1018.format(name=self.name))
|
|
||||||
if len(self.kb) == 0:
|
|
||||||
raise ValueError(Errors.E139.format(name=self.name))
|
|
||||||
|
|
||||||
def initialize(
|
|
||||||
self,
|
|
||||||
get_examples: Callable[[], Iterable[Example]],
|
|
||||||
*,
|
|
||||||
nlp: Optional[Language] = None,
|
|
||||||
kb_loader: Optional[Callable[[Vocab], KnowledgeBase]] = None,
|
|
||||||
):
|
|
||||||
"""Initialize the pipe for training, using a representative set
|
|
||||||
of data examples.
|
|
||||||
|
|
||||||
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
||||||
returns a representative sample of gold-standard Example objects.
|
|
||||||
nlp (Language): The current nlp object the component is part of.
|
|
||||||
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates an InMemoryLookupKB from a Vocab instance.
|
|
||||||
Note that providing this argument, will overwrite all data accumulated in the current KB.
|
|
||||||
Use this only when loading a KB as-such from file.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#initialize
|
|
||||||
"""
|
|
||||||
validate_get_examples(get_examples, "EntityLinker_v1.initialize")
|
|
||||||
if kb_loader is not None:
|
|
||||||
self.set_kb(kb_loader)
|
|
||||||
self.validate_kb()
|
|
||||||
nO = self.kb.entity_vector_length
|
|
||||||
doc_sample = []
|
|
||||||
vector_sample = []
|
|
||||||
for example in islice(get_examples(), 10):
|
|
||||||
doc_sample.append(example.x)
|
|
||||||
vector_sample.append(self.model.ops.alloc1f(nO))
|
|
||||||
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
||||||
assert len(vector_sample) > 0, Errors.E923.format(name=self.name)
|
|
||||||
self.model.initialize(
|
|
||||||
X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
|
|
||||||
)
|
|
||||||
|
|
||||||
def update(
|
|
||||||
self,
|
|
||||||
examples: Iterable[Example],
|
|
||||||
*,
|
|
||||||
drop: float = 0.0,
|
|
||||||
sgd: Optional[Optimizer] = None,
|
|
||||||
losses: Optional[Dict[str, float]] = None,
|
|
||||||
) -> Dict[str, float]:
|
|
||||||
"""Learn from a batch of documents and gold-standard information,
|
|
||||||
updating the pipe's model. Delegates to predict and get_loss.
|
|
||||||
|
|
||||||
examples (Iterable[Example]): A batch of Example objects.
|
|
||||||
drop (float): The dropout rate.
|
|
||||||
sgd (thinc.api.Optimizer): The optimizer.
|
|
||||||
losses (Dict[str, float]): Optional record of the loss during training.
|
|
||||||
Updated using the component name as the key.
|
|
||||||
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#update
|
|
||||||
"""
|
|
||||||
self.validate_kb()
|
|
||||||
if losses is None:
|
|
||||||
losses = {}
|
|
||||||
losses.setdefault(self.name, 0.0)
|
|
||||||
if not examples:
|
|
||||||
return losses
|
|
||||||
validate_examples(examples, "EntityLinker_v1.update")
|
|
||||||
sentence_docs = []
|
|
||||||
for eg in examples:
|
|
||||||
sentences = [s for s in eg.reference.sents]
|
|
||||||
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
|
|
||||||
for ent in eg.reference.ents:
|
|
||||||
# KB ID of the first token is the same as the whole span
|
|
||||||
kb_id = kb_ids[ent.start]
|
|
||||||
if kb_id:
|
|
||||||
try:
|
|
||||||
# find the sentence in the list of sentences.
|
|
||||||
sent_index = sentences.index(ent.sent)
|
|
||||||
except AttributeError:
|
|
||||||
# Catch the exception when ent.sent is None and provide a user-friendly warning
|
|
||||||
raise RuntimeError(Errors.E030) from None
|
|
||||||
# get n previous sentences, if there are any
|
|
||||||
start_sentence = max(0, sent_index - self.n_sents)
|
|
||||||
# get n posterior sentences, or as many < n as there are
|
|
||||||
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
|
|
||||||
# get token positions
|
|
||||||
start_token = sentences[start_sentence].start
|
|
||||||
end_token = sentences[end_sentence].end
|
|
||||||
# append that span as a doc to training
|
|
||||||
sent_doc = eg.predicted[start_token:end_token].as_doc()
|
|
||||||
sentence_docs.append(sent_doc)
|
|
||||||
set_dropout_rate(self.model, drop)
|
|
||||||
if not sentence_docs:
|
|
||||||
warnings.warn(Warnings.W093.format(name="Entity Linker"))
|
|
||||||
return losses
|
|
||||||
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
|
|
||||||
loss, d_scores = self.get_loss(
|
|
||||||
sentence_encodings=sentence_encodings, examples=examples
|
|
||||||
)
|
|
||||||
bp_context(d_scores)
|
|
||||||
if sgd is not None:
|
|
||||||
self.finish_update(sgd)
|
|
||||||
losses[self.name] += loss
|
|
||||||
return losses
|
|
||||||
|
|
||||||
def get_loss(self, examples: Iterable[Example], sentence_encodings: Floats2d):
|
|
||||||
validate_examples(examples, "EntityLinker_v1.get_loss")
|
|
||||||
entity_encodings = []
|
|
||||||
for eg in examples:
|
|
||||||
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
|
|
||||||
for ent in eg.reference.ents:
|
|
||||||
kb_id = kb_ids[ent.start]
|
|
||||||
if kb_id:
|
|
||||||
entity_encoding = self.kb.get_vector(kb_id)
|
|
||||||
entity_encodings.append(entity_encoding)
|
|
||||||
entity_encodings = self.model.ops.asarray2f(entity_encodings)
|
|
||||||
if sentence_encodings.shape != entity_encodings.shape:
|
|
||||||
err = Errors.E147.format(
|
|
||||||
method="get_loss", msg="gold entities do not match up"
|
|
||||||
)
|
|
||||||
raise RuntimeError(err)
|
|
||||||
gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
|
|
||||||
loss = self.distance.get_loss(sentence_encodings, entity_encodings)
|
|
||||||
loss = loss / len(entity_encodings)
|
|
||||||
return float(loss), gradients
|
|
||||||
|
|
||||||
def predict(self, docs: Iterable[Doc]) -> List[str]:
|
|
||||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
||||||
Returns the KB IDs for each entity in each doc, including NIL if there is
|
|
||||||
no prediction.
|
|
||||||
|
|
||||||
docs (Iterable[Doc]): The documents to predict.
|
|
||||||
RETURNS (List[str]): The models prediction for each document.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#predict
|
|
||||||
"""
|
|
||||||
self.validate_kb()
|
|
||||||
entity_count = 0
|
|
||||||
final_kb_ids: List[str] = []
|
|
||||||
if not docs:
|
|
||||||
return final_kb_ids
|
|
||||||
if isinstance(docs, Doc):
|
|
||||||
docs = [docs]
|
|
||||||
for i, doc in enumerate(docs):
|
|
||||||
sentences = [s for s in doc.sents]
|
|
||||||
if len(doc) > 0:
|
|
||||||
# Looping through each entity (TODO: rewrite)
|
|
||||||
for ent in doc.ents:
|
|
||||||
sent = ent.sent
|
|
||||||
sent_index = sentences.index(sent)
|
|
||||||
assert sent_index >= 0
|
|
||||||
# get n_neighbour sentences, clipped to the length of the document
|
|
||||||
start_sentence = max(0, sent_index - self.n_sents)
|
|
||||||
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
|
|
||||||
start_token = sentences[start_sentence].start
|
|
||||||
end_token = sentences[end_sentence].end
|
|
||||||
sent_doc = doc[start_token:end_token].as_doc()
|
|
||||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
|
||||||
xp = self.model.ops.xp
|
|
||||||
if self.incl_context:
|
|
||||||
sentence_encoding = self.model.predict([sent_doc])[0]
|
|
||||||
sentence_encoding_t = sentence_encoding.T
|
|
||||||
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
|
||||||
entity_count += 1
|
|
||||||
if ent.label_ in self.labels_discard:
|
|
||||||
# ignoring this entity - setting to NIL
|
|
||||||
final_kb_ids.append(self.NIL)
|
|
||||||
else:
|
|
||||||
candidates = list(self.get_candidates(self.kb, ent))
|
|
||||||
if not candidates:
|
|
||||||
# no prediction possible for this entity - setting to NIL
|
|
||||||
final_kb_ids.append(self.NIL)
|
|
||||||
elif len(candidates) == 1:
|
|
||||||
# shortcut for efficiency reasons: take the 1 candidate
|
|
||||||
final_kb_ids.append(candidates[0].entity_)
|
|
||||||
else:
|
|
||||||
random.shuffle(candidates)
|
|
||||||
# set all prior probabilities to 0 if incl_prior=False
|
|
||||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
|
||||||
if not self.incl_prior:
|
|
||||||
prior_probs = xp.asarray([0.0 for _ in candidates])
|
|
||||||
scores = prior_probs
|
|
||||||
# add in similarity from the context
|
|
||||||
if self.incl_context:
|
|
||||||
entity_encodings = xp.asarray(
|
|
||||||
[c.entity_vector for c in candidates]
|
|
||||||
)
|
|
||||||
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
|
|
||||||
if len(entity_encodings) != len(prior_probs):
|
|
||||||
raise RuntimeError(
|
|
||||||
Errors.E147.format(
|
|
||||||
method="predict",
|
|
||||||
msg="vectors not of equal length",
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# cosine similarity
|
|
||||||
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
|
|
||||||
sentence_norm * entity_norm
|
|
||||||
)
|
|
||||||
if sims.shape != prior_probs.shape:
|
|
||||||
raise ValueError(Errors.E161)
|
|
||||||
scores = prior_probs + sims - (prior_probs * sims)
|
|
||||||
best_index = scores.argmax().item()
|
|
||||||
best_candidate = candidates[best_index]
|
|
||||||
final_kb_ids.append(best_candidate.entity_)
|
|
||||||
if not (len(final_kb_ids) == entity_count):
|
|
||||||
err = Errors.E147.format(
|
|
||||||
method="predict", msg="result variables not of equal length"
|
|
||||||
)
|
|
||||||
raise RuntimeError(err)
|
|
||||||
return final_kb_ids
|
|
||||||
|
|
||||||
def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
|
|
||||||
"""Modify a batch of documents, using pre-computed scores.
|
|
||||||
|
|
||||||
docs (Iterable[Doc]): The documents to modify.
|
|
||||||
kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#set_annotations
|
|
||||||
"""
|
|
||||||
count_ents = len([ent for doc in docs for ent in doc.ents])
|
|
||||||
if count_ents != len(kb_ids):
|
|
||||||
raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
|
|
||||||
i = 0
|
|
||||||
overwrite = self.cfg["overwrite"]
|
|
||||||
for doc in docs:
|
|
||||||
for ent in doc.ents:
|
|
||||||
kb_id = kb_ids[i]
|
|
||||||
i += 1
|
|
||||||
for token in ent:
|
|
||||||
if token.ent_kb_id == 0 or overwrite:
|
|
||||||
token.ent_kb_id_ = kb_id
|
|
||||||
|
|
||||||
def to_bytes(self, *, exclude=tuple()):
|
|
||||||
"""Serialize the pipe to a bytestring.
|
|
||||||
|
|
||||||
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
||||||
RETURNS (bytes): The serialized object.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#to_bytes
|
|
||||||
"""
|
|
||||||
self._validate_serialization_attrs()
|
|
||||||
serialize = {}
|
|
||||||
if hasattr(self, "cfg") and self.cfg is not None:
|
|
||||||
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
|
||||||
serialize["vocab"] = lambda: self.vocab.to_bytes(exclude=exclude)
|
|
||||||
serialize["kb"] = self.kb.to_bytes
|
|
||||||
serialize["model"] = self.model.to_bytes
|
|
||||||
return util.to_bytes(serialize, exclude)
|
|
||||||
|
|
||||||
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
||||||
"""Load the pipe from a bytestring.
|
|
||||||
|
|
||||||
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
||||||
RETURNS (TrainablePipe): The loaded object.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#from_bytes
|
|
||||||
"""
|
|
||||||
self._validate_serialization_attrs()
|
|
||||||
|
|
||||||
def load_model(b):
|
|
||||||
try:
|
|
||||||
self.model.from_bytes(b)
|
|
||||||
except AttributeError:
|
|
||||||
raise ValueError(Errors.E149) from None
|
|
||||||
|
|
||||||
deserialize = {}
|
|
||||||
if hasattr(self, "cfg") and self.cfg is not None:
|
|
||||||
deserialize["cfg"] = lambda b: self.cfg.update(srsly.json_loads(b))
|
|
||||||
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b, exclude=exclude)
|
|
||||||
deserialize["kb"] = lambda b: self.kb.from_bytes(b)
|
|
||||||
deserialize["model"] = load_model
|
|
||||||
util.from_bytes(bytes_data, deserialize, exclude)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def to_disk(
|
|
||||||
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
||||||
) -> None:
|
|
||||||
"""Serialize the pipe to disk.
|
|
||||||
|
|
||||||
path (str / Path): Path to a directory.
|
|
||||||
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#to_disk
|
|
||||||
"""
|
|
||||||
serialize = {}
|
|
||||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p, exclude=exclude)
|
|
||||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
|
||||||
serialize["kb"] = lambda p: self.kb.to_disk(p)
|
|
||||||
serialize["model"] = lambda p: self.model.to_disk(p)
|
|
||||||
util.to_disk(path, serialize, exclude)
|
|
||||||
|
|
||||||
def from_disk(
|
|
||||||
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
|
|
||||||
) -> "EntityLinker_v1":
|
|
||||||
"""Load the pipe from disk. Modifies the object in place and returns it.
|
|
||||||
|
|
||||||
path (str / Path): Path to a directory.
|
|
||||||
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
||||||
RETURNS (EntityLinker): The modified EntityLinker object.
|
|
||||||
|
|
||||||
DOCS: https://spacy.io/api/entitylinker#from_disk
|
|
||||||
"""
|
|
||||||
|
|
||||||
def load_model(p):
|
|
||||||
try:
|
|
||||||
with p.open("rb") as infile:
|
|
||||||
self.model.from_bytes(infile.read())
|
|
||||||
except AttributeError:
|
|
||||||
raise ValueError(Errors.E149) from None
|
|
||||||
|
|
||||||
deserialize: Dict[str, Callable[[Any], Any]] = {}
|
|
||||||
deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
|
|
||||||
deserialize["vocab"] = lambda p: self.vocab.from_disk(p, exclude=exclude)
|
|
||||||
deserialize["kb"] = lambda p: self.kb.from_disk(p)
|
|
||||||
deserialize["model"] = load_model
|
|
||||||
util.from_disk(path, deserialize, exclude)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def rehearse(self, examples, *, sgd=None, losses=None, **config):
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def add_label(self, label):
|
|
||||||
raise NotImplementedError
|
|
|
@ -12,7 +12,6 @@ from spacy.lang.en import English
|
||||||
from spacy.ml import load_kb
|
from spacy.ml import load_kb
|
||||||
from spacy.ml.models.entity_linker import build_span_maker
|
from spacy.ml.models.entity_linker import build_span_maker
|
||||||
from spacy.pipeline import EntityLinker, TrainablePipe
|
from spacy.pipeline import EntityLinker, TrainablePipe
|
||||||
from spacy.pipeline.legacy import EntityLinker_v1
|
|
||||||
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
||||||
from spacy.scorer import Scorer
|
from spacy.scorer import Scorer
|
||||||
from spacy.tests.util import make_tempdir
|
from spacy.tests.util import make_tempdir
|
||||||
|
@ -997,6 +996,8 @@ def test_scorer_links():
|
||||||
)
|
)
|
||||||
# fmt: on
|
# fmt: on
|
||||||
def test_legacy_architectures(name, config):
|
def test_legacy_architectures(name, config):
|
||||||
|
from spacy_legacy.components.entity_linker import EntityLinker_v1
|
||||||
|
|
||||||
# Ensure that the legacy architectures still work
|
# Ensure that the legacy architectures still work
|
||||||
vector_length = 3
|
vector_length = 3
|
||||||
nlp = English()
|
nlp = English()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user