* Begin rewriting twitter_filter examples

This commit is contained in:
Matthew Honnibal 2015-08-22 22:12:26 +02:00
parent f9a6bea746
commit 692a8d3e3c

View File

@ -1,140 +1,35 @@
# encoding: utf8
from __future__ import unicode_literals, print_function from __future__ import unicode_literals, print_function
import plac import plac
import codecs import codecs
import sys import pathlib
import math import random
import twython
import spacy.en import spacy.en
from spacy.parts_of_speech import VERB, NOUN, ADV, ADJ
from termcolor import colored import _handler
from twython import TwythonStreamer
from os import path
from math import sqrt
from numpy import dot
from numpy.linalg import norm
class Meaning(object): class Connection(twython.TwythonStreamer):
def __init__(self, vectors): def __init__(self, keys_dir, nlp, query):
if vectors: keys_dir = pathlib.Path(keys_dir)
self.vector = sum(vectors) / len(vectors) read = lambda fn: (keys_dir / (fn + '.txt')).open().read().strip()
self.norm = norm(self.vector) api_key = map(read, ['key', 'secret', 'token', 'token_secret'])
else: twython.TwythonStreamer.__init__(self, *api_key)
self.vector = None
self.norm = 0
@classmethod
def from_path(cls, nlp, loc):
with codecs.open(loc, 'r', 'utf8') as file_:
terms = file_.read().strip().split()
return cls.from_terms(nlp, terms)
@classmethod
def from_tokens(cls, nlp, tokens):
vectors = [t.repvec for t in tokens]
return cls(vectors)
@classmethod
def from_terms(cls, nlp, examples):
lexemes = [nlp.vocab[eg] for eg in examples]
vectors = [eg.repvec for eg in lexemes]
return cls(vectors)
def similarity(self, other):
if not self.norm or not other.norm:
return -1
return dot(self.vector, other.vector) / (self.norm * other.norm)
def print_colored(model, stream=sys.stdout):
if model['is_match']:
color = 'green'
elif model['is_reject']:
color = 'red'
else:
color = 'grey'
if not model['is_rare'] and model['is_match'] and not model['is_reject']:
match_score = colored('%.3f' % model['match_score'], 'green')
reject_score = colored('%.3f' % model['reject_score'], 'red')
prob = '%.5f' % model['prob']
print(match_score, reject_score, prob)
print(repr(model['text']), color)
print('')
class TextMatcher(object):
def __init__(self, nlp, get_target, get_reject, min_prob, min_match, max_reject):
self.nlp = nlp self.nlp = nlp
self.get_target = get_target self.query = query
self.get_reject = get_reject
self.min_prob = min_prob
self.min_match = min_match
self.max_reject = max_reject
def __call__(self, text):
tweet = self.nlp(text)
target_terms = self.get_target()
reject_terms = self.get_reject()
prob = sum(math.exp(w.prob) for w in tweet) / len(tweet)
meaning = Meaning.from_tokens(self, tweet)
match_score = meaning.similarity(self.get_target())
reject_score = meaning.similarity(self.get_reject())
return {
'text': tweet.string,
'prob': prob,
'match_score': match_score,
'reject_score': reject_score,
'is_rare': prob < self.min_prob,
'is_match': prob >= self.min_prob and match_score >= self.min_match,
'is_reject': prob >= self.min_prob and reject_score >= self.max_reject
}
class Connection(TwythonStreamer):
def __init__(self, keys_dir, handler, view):
keys = Secrets(keys_dir)
TwythonStreamer.__init__(self, keys.key, keys.secret, keys.token, keys.token_secret)
self.handler = handler
self.view = view
def on_success(self, data): def on_success(self, data):
text = data.get('text', u'') _handler.handle_tweet(self.nlp, data, self.query)
# Twython returns either bytes or unicode, depending on tweet. if random.random() >= 0.1:
# #APIshaming reload(_handler)
try:
model = self.handler(text)
except TypeError:
model = self.handler(text.decode('utf8'))
status = self.view(model, sys.stdin)
def on_error(self, status_code, data):
print(status_code)
class Secrets(object): def main(keys_dir, term):
def __init__(self, key_dir): nlp = spacy.en.English()
self.key = open(path.join(key_dir, 'key.txt')).read().strip() twitter = Connection(keys_dir, nlp, term)
self.secret = open(path.join(key_dir, 'secret.txt')).read().strip() twitter.statuses.filter(track=term, language='en')
self.token = open(path.join(key_dir, 'token.txt')).read().strip()
self.token_secret = open(path.join(key_dir, 'token_secret.txt')).read().strip()
def main(keys_dir, term, target_loc, reject_loc, min_prob=-20, min_match=0.8, max_reject=0.5):
# We don't need the parser for this demo, so may as well save the loading time
nlp = spacy.en.English(Parser=None)
get_target = lambda: Meaning.from_path(nlp, target_loc)
get_reject = lambda: Meaning.from_path(nlp, reject_loc)
matcher = TextMatcher(nlp, get_target, get_reject, min_prob, min_match, max_reject)
twitter = Connection(keys_dir, matcher, print_colored)
twitter.statuses.filter(track=term)
if __name__ == '__main__': if __name__ == '__main__':