mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
69dbd59a13
106
.github/contributors/ameyuuno.md
vendored
Normal file
106
.github/contributors/ameyuuno.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Alexey Kim |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 2019-07-09 |
|
||||
| GitHub username | ameyuuno |
|
||||
| Website (optional) | https://ameyuuno.io |
|
106
.github/contributors/askhogan.md
vendored
Normal file
106
.github/contributors/askhogan.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [X] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Patrick Hogan |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 7/7/2019 |
|
||||
| GitHub username | askhogan@gmail.com |
|
||||
| Website (optional) | |
|
106
.github/contributors/cedar101.md
vendored
Normal file
106
.github/contributors/cedar101.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | ------------------------ |
|
||||
| Name | Kim, Baeg-il |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 2019-07-03 |
|
||||
| GitHub username | cedar101 |
|
||||
| Website (optional) | |
|
106
.github/contributors/khellan.md
vendored
Normal file
106
.github/contributors/khellan.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Knut O. Hellan |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 02.07.2019 |
|
||||
| GitHub username | khellan |
|
||||
| Website (optional) | knuthellan.com |
|
106
.github/contributors/kognate.md
vendored
Normal file
106
.github/contributors/kognate.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [X] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Joshua B. Smith |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | July 7, 2019 |
|
||||
| GitHub username | kognate |
|
||||
| Website (optional) | |
|
106
.github/contributors/rokasramas.md
vendored
Normal file
106
.github/contributors/rokasramas.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [ ] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [x] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | ----------------------- |
|
||||
| Name | Rokas Ramanauskas |
|
||||
| Company name (if applicable) | TokenMill |
|
||||
| Title or role (if applicable) | Software Engineer |
|
||||
| Date | 2019-07-02 |
|
||||
| GitHub username | rokasramas |
|
||||
| Website (optional) | http://www.tokenmill.lt |
|
106
.github/contributors/yashpatadia.md
vendored
Normal file
106
.github/contributors/yashpatadia.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Yash Patadia |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 11/07/2019 |
|
||||
| GitHub username | yash1994 |
|
||||
| Website (optional) | |
|
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -56,6 +56,8 @@ parts/
|
|||
sdist/
|
||||
var/
|
||||
*.egg-info/
|
||||
pip-wheel-metadata/
|
||||
Pipfile.lock
|
||||
.installed.cfg
|
||||
*.egg
|
||||
.eggs
|
||||
|
|
0
bin/__init__.py
Normal file
0
bin/__init__.py
Normal file
|
@ -5,7 +5,6 @@ import logging
|
|||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
from gensim.models import Word2Vec
|
||||
from preshed.counter import PreshCounter
|
||||
import plac
|
||||
import spacy
|
||||
|
||||
|
|
|
@ -292,8 +292,8 @@ def evaluate(gold_ud, system_ud, deprel_weights=None, check_parse=True):
|
|||
|
||||
def spans_score(gold_spans, system_spans):
|
||||
correct, gi, si = 0, 0, 0
|
||||
undersegmented = list()
|
||||
oversegmented = list()
|
||||
undersegmented = []
|
||||
oversegmented = []
|
||||
combo = 0
|
||||
previous_end_si_earlier = False
|
||||
previous_end_gi_earlier = False
|
||||
|
|
0
bin/wiki_entity_linking/__init__.py
Normal file
0
bin/wiki_entity_linking/__init__.py
Normal file
171
bin/wiki_entity_linking/kb_creator.py
Normal file
171
bin/wiki_entity_linking/kb_creator.py
Normal file
|
@ -0,0 +1,171 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .train_descriptions import EntityEncoder
|
||||
from . import wikidata_processor as wd, wikipedia_processor as wp
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
import csv
|
||||
import datetime
|
||||
|
||||
|
||||
INPUT_DIM = 300 # dimension of pre-trained input vectors
|
||||
DESC_WIDTH = 64 # dimension of output entity vectors
|
||||
|
||||
|
||||
def create_kb(nlp, max_entities_per_alias, min_entity_freq, min_occ,
|
||||
entity_def_output, entity_descr_output,
|
||||
count_input, prior_prob_input, wikidata_input):
|
||||
# Create the knowledge base from Wikidata entries
|
||||
kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=DESC_WIDTH)
|
||||
|
||||
# disable this part of the pipeline when rerunning the KB generation from preprocessed files
|
||||
read_raw_data = True
|
||||
|
||||
if read_raw_data:
|
||||
print()
|
||||
print(" * _read_wikidata_entities", datetime.datetime.now())
|
||||
title_to_id, id_to_descr = wd.read_wikidata_entities_json(wikidata_input)
|
||||
|
||||
# write the title-ID and ID-description mappings to file
|
||||
_write_entity_files(entity_def_output, entity_descr_output, title_to_id, id_to_descr)
|
||||
|
||||
else:
|
||||
# read the mappings from file
|
||||
title_to_id = get_entity_to_id(entity_def_output)
|
||||
id_to_descr = get_id_to_description(entity_descr_output)
|
||||
|
||||
print()
|
||||
print(" * _get_entity_frequencies", datetime.datetime.now())
|
||||
print()
|
||||
entity_frequencies = wp.get_all_frequencies(count_input=count_input)
|
||||
|
||||
# filter the entities for in the KB by frequency, because there's just too much data (8M entities) otherwise
|
||||
filtered_title_to_id = dict()
|
||||
entity_list = []
|
||||
description_list = []
|
||||
frequency_list = []
|
||||
for title, entity in title_to_id.items():
|
||||
freq = entity_frequencies.get(title, 0)
|
||||
desc = id_to_descr.get(entity, None)
|
||||
if desc and freq > min_entity_freq:
|
||||
entity_list.append(entity)
|
||||
description_list.append(desc)
|
||||
frequency_list.append(freq)
|
||||
filtered_title_to_id[title] = entity
|
||||
|
||||
print("Kept", len(filtered_title_to_id.keys()), "out of", len(title_to_id.keys()),
|
||||
"titles with filter frequency", min_entity_freq)
|
||||
|
||||
print()
|
||||
print(" * train entity encoder", datetime.datetime.now())
|
||||
print()
|
||||
encoder = EntityEncoder(nlp, INPUT_DIM, DESC_WIDTH)
|
||||
encoder.train(description_list=description_list, to_print=True)
|
||||
|
||||
print()
|
||||
print(" * get entity embeddings", datetime.datetime.now())
|
||||
print()
|
||||
embeddings = encoder.apply_encoder(description_list)
|
||||
|
||||
print()
|
||||
print(" * adding", len(entity_list), "entities", datetime.datetime.now())
|
||||
kb.set_entities(entity_list=entity_list, prob_list=frequency_list, vector_list=embeddings)
|
||||
|
||||
print()
|
||||
print(" * adding aliases", datetime.datetime.now())
|
||||
print()
|
||||
_add_aliases(kb, title_to_id=filtered_title_to_id,
|
||||
max_entities_per_alias=max_entities_per_alias, min_occ=min_occ,
|
||||
prior_prob_input=prior_prob_input)
|
||||
|
||||
print()
|
||||
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
|
||||
|
||||
print("done with kb", datetime.datetime.now())
|
||||
return kb
|
||||
|
||||
|
||||
def _write_entity_files(entity_def_output, entity_descr_output, title_to_id, id_to_descr):
|
||||
with open(entity_def_output, mode='w', encoding='utf8') as id_file:
|
||||
id_file.write("WP_title" + "|" + "WD_id" + "\n")
|
||||
for title, qid in title_to_id.items():
|
||||
id_file.write(title + "|" + str(qid) + "\n")
|
||||
|
||||
with open(entity_descr_output, mode='w', encoding='utf8') as descr_file:
|
||||
descr_file.write("WD_id" + "|" + "description" + "\n")
|
||||
for qid, descr in id_to_descr.items():
|
||||
descr_file.write(str(qid) + "|" + descr + "\n")
|
||||
|
||||
|
||||
def get_entity_to_id(entity_def_output):
|
||||
entity_to_id = dict()
|
||||
with open(entity_def_output, 'r', encoding='utf8') as csvfile:
|
||||
csvreader = csv.reader(csvfile, delimiter='|')
|
||||
# skip header
|
||||
next(csvreader)
|
||||
for row in csvreader:
|
||||
entity_to_id[row[0]] = row[1]
|
||||
return entity_to_id
|
||||
|
||||
|
||||
def get_id_to_description(entity_descr_output):
|
||||
id_to_desc = dict()
|
||||
with open(entity_descr_output, 'r', encoding='utf8') as csvfile:
|
||||
csvreader = csv.reader(csvfile, delimiter='|')
|
||||
# skip header
|
||||
next(csvreader)
|
||||
for row in csvreader:
|
||||
id_to_desc[row[0]] = row[1]
|
||||
return id_to_desc
|
||||
|
||||
|
||||
def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_input):
|
||||
wp_titles = title_to_id.keys()
|
||||
|
||||
# adding aliases with prior probabilities
|
||||
# we can read this file sequentially, it's sorted by alias, and then by count
|
||||
with open(prior_prob_input, mode='r', encoding='utf8') as prior_file:
|
||||
# skip header
|
||||
prior_file.readline()
|
||||
line = prior_file.readline()
|
||||
previous_alias = None
|
||||
total_count = 0
|
||||
counts = []
|
||||
entities = []
|
||||
while line:
|
||||
splits = line.replace('\n', "").split(sep='|')
|
||||
new_alias = splits[0]
|
||||
count = int(splits[1])
|
||||
entity = splits[2]
|
||||
|
||||
if new_alias != previous_alias and previous_alias:
|
||||
# done reading the previous alias --> output
|
||||
if len(entities) > 0:
|
||||
selected_entities = []
|
||||
prior_probs = []
|
||||
for ent_count, ent_string in zip(counts, entities):
|
||||
if ent_string in wp_titles:
|
||||
wd_id = title_to_id[ent_string]
|
||||
p_entity_givenalias = ent_count / total_count
|
||||
selected_entities.append(wd_id)
|
||||
prior_probs.append(p_entity_givenalias)
|
||||
|
||||
if selected_entities:
|
||||
try:
|
||||
kb.add_alias(alias=previous_alias, entities=selected_entities, probabilities=prior_probs)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
total_count = 0
|
||||
counts = []
|
||||
entities = []
|
||||
|
||||
total_count += count
|
||||
|
||||
if len(entities) < max_entities_per_alias and count >= min_occ:
|
||||
counts.append(count)
|
||||
entities.append(entity)
|
||||
previous_alias = new_alias
|
||||
|
||||
line = prior_file.readline()
|
||||
|
121
bin/wiki_entity_linking/train_descriptions.py
Normal file
121
bin/wiki_entity_linking/train_descriptions.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
# coding: utf-8
|
||||
from random import shuffle
|
||||
|
||||
import numpy as np
|
||||
|
||||
from spacy._ml import zero_init, create_default_optimizer
|
||||
from spacy.cli.pretrain import get_cossim_loss
|
||||
|
||||
from thinc.v2v import Model
|
||||
from thinc.api import chain
|
||||
from thinc.neural._classes.affine import Affine
|
||||
|
||||
|
||||
class EntityEncoder:
|
||||
"""
|
||||
Train the embeddings of entity descriptions to fit a fixed-size entity vector (e.g. 64D).
|
||||
This entity vector will be stored in the KB, for further downstream use in the entity model.
|
||||
"""
|
||||
|
||||
DROP = 0
|
||||
EPOCHS = 5
|
||||
STOP_THRESHOLD = 0.04
|
||||
|
||||
BATCH_SIZE = 1000
|
||||
|
||||
def __init__(self, nlp, input_dim, desc_width):
|
||||
self.nlp = nlp
|
||||
self.input_dim = input_dim
|
||||
self.desc_width = desc_width
|
||||
|
||||
def apply_encoder(self, description_list):
|
||||
if self.encoder is None:
|
||||
raise ValueError("Can not apply encoder before training it")
|
||||
|
||||
batch_size = 100000
|
||||
|
||||
start = 0
|
||||
stop = min(batch_size, len(description_list))
|
||||
encodings = []
|
||||
|
||||
while start < len(description_list):
|
||||
docs = list(self.nlp.pipe(description_list[start:stop]))
|
||||
doc_embeddings = [self._get_doc_embedding(doc) for doc in docs]
|
||||
enc = self.encoder(np.asarray(doc_embeddings))
|
||||
encodings.extend(enc.tolist())
|
||||
|
||||
start = start + batch_size
|
||||
stop = min(stop + batch_size, len(description_list))
|
||||
|
||||
return encodings
|
||||
|
||||
def train(self, description_list, to_print=False):
|
||||
processed, loss = self._train_model(description_list)
|
||||
if to_print:
|
||||
print("Trained on", processed, "entities across", self.EPOCHS, "epochs")
|
||||
print("Final loss:", loss)
|
||||
|
||||
def _train_model(self, description_list):
|
||||
# TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy
|
||||
|
||||
self._build_network(self.input_dim, self.desc_width)
|
||||
|
||||
processed = 0
|
||||
loss = 1
|
||||
descriptions = description_list.copy() # copy this list so that shuffling does not affect other functions
|
||||
|
||||
for i in range(self.EPOCHS):
|
||||
shuffle(descriptions)
|
||||
|
||||
batch_nr = 0
|
||||
start = 0
|
||||
stop = min(self.BATCH_SIZE, len(descriptions))
|
||||
|
||||
while loss > self.STOP_THRESHOLD and start < len(descriptions):
|
||||
batch = []
|
||||
for descr in descriptions[start:stop]:
|
||||
doc = self.nlp(descr)
|
||||
doc_vector = self._get_doc_embedding(doc)
|
||||
batch.append(doc_vector)
|
||||
|
||||
loss = self._update(batch)
|
||||
print(i, batch_nr, loss)
|
||||
processed += len(batch)
|
||||
|
||||
batch_nr += 1
|
||||
start = start + self.BATCH_SIZE
|
||||
stop = min(stop + self.BATCH_SIZE, len(descriptions))
|
||||
|
||||
return processed, loss
|
||||
|
||||
@staticmethod
|
||||
def _get_doc_embedding(doc):
|
||||
indices = np.zeros((len(doc),), dtype="i")
|
||||
for i, word in enumerate(doc):
|
||||
if word.orth in doc.vocab.vectors.key2row:
|
||||
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
||||
else:
|
||||
indices[i] = 0
|
||||
word_vectors = doc.vocab.vectors.data[indices]
|
||||
doc_vector = np.mean(word_vectors, axis=0)
|
||||
return doc_vector
|
||||
|
||||
def _build_network(self, orig_width, hidden_with):
|
||||
with Model.define_operators({">>": chain}):
|
||||
# very simple encoder-decoder model
|
||||
self.encoder = (
|
||||
Affine(hidden_with, orig_width)
|
||||
)
|
||||
self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0))
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
|
||||
def _update(self, vectors):
|
||||
predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP)
|
||||
loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors))
|
||||
bp_model(d_scores, sgd=self.sgd)
|
||||
return loss / len(vectors)
|
||||
|
||||
@staticmethod
|
||||
def _get_loss(golds, scores):
|
||||
loss, gradients = get_cossim_loss(scores, golds)
|
||||
return loss, gradients
|
353
bin/wiki_entity_linking/training_set_creator.py
Normal file
353
bin/wiki_entity_linking/training_set_creator.py
Normal file
|
@ -0,0 +1,353 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
import re
|
||||
import bz2
|
||||
import datetime
|
||||
|
||||
from spacy.gold import GoldParse
|
||||
from bin.wiki_entity_linking import kb_creator
|
||||
|
||||
"""
|
||||
Process Wikipedia interlinks to generate a training dataset for the EL algorithm.
|
||||
Gold-standard entities are stored in one file in standoff format (by character offset).
|
||||
"""
|
||||
|
||||
ENTITY_FILE = "gold_entities.csv"
|
||||
|
||||
|
||||
def create_training(wikipedia_input, entity_def_input, training_output):
|
||||
wp_to_id = kb_creator.get_entity_to_id(entity_def_input)
|
||||
_process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None)
|
||||
|
||||
|
||||
def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None):
|
||||
"""
|
||||
Read the XML wikipedia data to parse out training data:
|
||||
raw text data + positive instances
|
||||
"""
|
||||
title_regex = re.compile(r'(?<=<title>).*(?=</title>)')
|
||||
id_regex = re.compile(r'(?<=<id>)\d*(?=</id>)')
|
||||
|
||||
read_ids = set()
|
||||
entityfile_loc = training_output / ENTITY_FILE
|
||||
with open(entityfile_loc, mode="w", encoding='utf8') as entityfile:
|
||||
# write entity training header file
|
||||
_write_training_entity(outputfile=entityfile,
|
||||
article_id="article_id",
|
||||
alias="alias",
|
||||
entity="WD_id",
|
||||
start="start",
|
||||
end="end")
|
||||
|
||||
with bz2.open(wikipedia_input, mode='rb') as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
article_text = ""
|
||||
article_title = None
|
||||
article_id = None
|
||||
reading_text = False
|
||||
reading_revision = False
|
||||
while line and (not limit or cnt < limit):
|
||||
if cnt % 1000000 == 0:
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump")
|
||||
clean_line = line.strip().decode("utf-8")
|
||||
|
||||
if clean_line == "<revision>":
|
||||
reading_revision = True
|
||||
elif clean_line == "</revision>":
|
||||
reading_revision = False
|
||||
|
||||
# Start reading new page
|
||||
if clean_line == "<page>":
|
||||
article_text = ""
|
||||
article_title = None
|
||||
article_id = None
|
||||
|
||||
# finished reading this page
|
||||
elif clean_line == "</page>":
|
||||
if article_id:
|
||||
try:
|
||||
_process_wp_text(wp_to_id, entityfile, article_id, article_title, article_text.strip(),
|
||||
training_output)
|
||||
except Exception as e:
|
||||
print("Error processing article", article_id, article_title, e)
|
||||
else:
|
||||
print("Done processing a page, but couldn't find an article_id ?", article_title)
|
||||
article_text = ""
|
||||
article_title = None
|
||||
article_id = None
|
||||
reading_text = False
|
||||
reading_revision = False
|
||||
|
||||
# start reading text within a page
|
||||
if "<text" in clean_line:
|
||||
reading_text = True
|
||||
|
||||
if reading_text:
|
||||
article_text += " " + clean_line
|
||||
|
||||
# stop reading text within a page (we assume a new page doesn't start on the same line)
|
||||
if "</text" in clean_line:
|
||||
reading_text = False
|
||||
|
||||
# read the ID of this article (outside the revision portion of the document)
|
||||
if not reading_revision:
|
||||
ids = id_regex.search(clean_line)
|
||||
if ids:
|
||||
article_id = ids[0]
|
||||
if article_id in read_ids:
|
||||
print("Found duplicate article ID", article_id, clean_line) # This should never happen ...
|
||||
read_ids.add(article_id)
|
||||
|
||||
# read the title of this article (outside the revision portion of the document)
|
||||
if not reading_revision:
|
||||
titles = title_regex.search(clean_line)
|
||||
if titles:
|
||||
article_title = titles[0].strip()
|
||||
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
|
||||
|
||||
text_regex = re.compile(r'(?<=<text xml:space=\"preserve\">).*(?=</text)')
|
||||
|
||||
|
||||
def _process_wp_text(wp_to_id, entityfile, article_id, article_title, article_text, training_output):
|
||||
found_entities = False
|
||||
|
||||
# ignore meta Wikipedia pages
|
||||
if article_title.startswith("Wikipedia:"):
|
||||
return
|
||||
|
||||
# remove the text tags
|
||||
text = text_regex.search(article_text).group(0)
|
||||
|
||||
# stop processing if this is a redirect page
|
||||
if text.startswith("#REDIRECT"):
|
||||
return
|
||||
|
||||
# get the raw text without markup etc, keeping only interwiki links
|
||||
clean_text = _get_clean_wp_text(text)
|
||||
|
||||
# read the text char by char to get the right offsets for the interwiki links
|
||||
final_text = ""
|
||||
open_read = 0
|
||||
reading_text = True
|
||||
reading_entity = False
|
||||
reading_mention = False
|
||||
reading_special_case = False
|
||||
entity_buffer = ""
|
||||
mention_buffer = ""
|
||||
for index, letter in enumerate(clean_text):
|
||||
if letter == '[':
|
||||
open_read += 1
|
||||
elif letter == ']':
|
||||
open_read -= 1
|
||||
elif letter == '|':
|
||||
if reading_text:
|
||||
final_text += letter
|
||||
# switch from reading entity to mention in the [[entity|mention]] pattern
|
||||
elif reading_entity:
|
||||
reading_text = False
|
||||
reading_entity = False
|
||||
reading_mention = True
|
||||
else:
|
||||
reading_special_case = True
|
||||
else:
|
||||
if reading_entity:
|
||||
entity_buffer += letter
|
||||
elif reading_mention:
|
||||
mention_buffer += letter
|
||||
elif reading_text:
|
||||
final_text += letter
|
||||
else:
|
||||
raise ValueError("Not sure at point", clean_text[index-2:index+2])
|
||||
|
||||
if open_read > 2:
|
||||
reading_special_case = True
|
||||
|
||||
if open_read == 2 and reading_text:
|
||||
reading_text = False
|
||||
reading_entity = True
|
||||
reading_mention = False
|
||||
|
||||
# we just finished reading an entity
|
||||
if open_read == 0 and not reading_text:
|
||||
if '#' in entity_buffer or entity_buffer.startswith(':'):
|
||||
reading_special_case = True
|
||||
# Ignore cases with nested structures like File: handles etc
|
||||
if not reading_special_case:
|
||||
if not mention_buffer:
|
||||
mention_buffer = entity_buffer
|
||||
start = len(final_text)
|
||||
end = start + len(mention_buffer)
|
||||
qid = wp_to_id.get(entity_buffer, None)
|
||||
if qid:
|
||||
_write_training_entity(outputfile=entityfile,
|
||||
article_id=article_id,
|
||||
alias=mention_buffer,
|
||||
entity=qid,
|
||||
start=start,
|
||||
end=end)
|
||||
found_entities = True
|
||||
final_text += mention_buffer
|
||||
|
||||
entity_buffer = ""
|
||||
mention_buffer = ""
|
||||
|
||||
reading_text = True
|
||||
reading_entity = False
|
||||
reading_mention = False
|
||||
reading_special_case = False
|
||||
|
||||
if found_entities:
|
||||
_write_training_article(article_id=article_id, clean_text=final_text, training_output=training_output)
|
||||
|
||||
|
||||
info_regex = re.compile(r'{[^{]*?}')
|
||||
htlm_regex = re.compile(r'<!--[^-]*-->')
|
||||
category_regex = re.compile(r'\[\[Category:[^\[]*]]')
|
||||
file_regex = re.compile(r'\[\[File:[^[\]]+]]')
|
||||
ref_regex = re.compile(r'<ref.*?>') # non-greedy
|
||||
ref_2_regex = re.compile(r'</ref.*?>') # non-greedy
|
||||
|
||||
|
||||
def _get_clean_wp_text(article_text):
|
||||
clean_text = article_text.strip()
|
||||
|
||||
# remove bolding & italic markup
|
||||
clean_text = clean_text.replace('\'\'\'', '')
|
||||
clean_text = clean_text.replace('\'\'', '')
|
||||
|
||||
# remove nested {{info}} statements by removing the inner/smallest ones first and iterating
|
||||
try_again = True
|
||||
previous_length = len(clean_text)
|
||||
while try_again:
|
||||
clean_text = info_regex.sub('', clean_text) # non-greedy match excluding a nested {
|
||||
if len(clean_text) < previous_length:
|
||||
try_again = True
|
||||
else:
|
||||
try_again = False
|
||||
previous_length = len(clean_text)
|
||||
|
||||
# remove HTML comments
|
||||
clean_text = htlm_regex.sub('', clean_text)
|
||||
|
||||
# remove Category and File statements
|
||||
clean_text = category_regex.sub('', clean_text)
|
||||
clean_text = file_regex.sub('', clean_text)
|
||||
|
||||
# remove multiple =
|
||||
while '==' in clean_text:
|
||||
clean_text = clean_text.replace("==", "=")
|
||||
|
||||
clean_text = clean_text.replace(". =", ".")
|
||||
clean_text = clean_text.replace(" = ", ". ")
|
||||
clean_text = clean_text.replace("= ", ".")
|
||||
clean_text = clean_text.replace(" =", "")
|
||||
|
||||
# remove refs (non-greedy match)
|
||||
clean_text = ref_regex.sub('', clean_text)
|
||||
clean_text = ref_2_regex.sub('', clean_text)
|
||||
|
||||
# remove additional wikiformatting
|
||||
clean_text = re.sub(r'<blockquote>', '', clean_text)
|
||||
clean_text = re.sub(r'</blockquote>', '', clean_text)
|
||||
|
||||
# change special characters back to normal ones
|
||||
clean_text = clean_text.replace(r'<', '<')
|
||||
clean_text = clean_text.replace(r'>', '>')
|
||||
clean_text = clean_text.replace(r'"', '"')
|
||||
clean_text = clean_text.replace(r'&nbsp;', ' ')
|
||||
clean_text = clean_text.replace(r'&', '&')
|
||||
|
||||
# remove multiple spaces
|
||||
while ' ' in clean_text:
|
||||
clean_text = clean_text.replace(' ', ' ')
|
||||
|
||||
return clean_text.strip()
|
||||
|
||||
|
||||
def _write_training_article(article_id, clean_text, training_output):
|
||||
file_loc = training_output / str(article_id) + ".txt"
|
||||
with open(file_loc, mode='w', encoding='utf8') as outputfile:
|
||||
outputfile.write(clean_text)
|
||||
|
||||
|
||||
def _write_training_entity(outputfile, article_id, alias, entity, start, end):
|
||||
outputfile.write(article_id + "|" + alias + "|" + entity + "|" + str(start) + "|" + str(end) + "\n")
|
||||
|
||||
|
||||
def is_dev(article_id):
|
||||
return article_id.endswith("3")
|
||||
|
||||
|
||||
def read_training(nlp, training_dir, dev, limit):
|
||||
# This method provides training examples that correspond to the entity annotations found by the nlp object
|
||||
entityfile_loc = training_dir / ENTITY_FILE
|
||||
data = []
|
||||
|
||||
# assume the data is written sequentially, so we can reuse the article docs
|
||||
current_article_id = None
|
||||
current_doc = None
|
||||
ents_by_offset = dict()
|
||||
skip_articles = set()
|
||||
total_entities = 0
|
||||
|
||||
with open(entityfile_loc, mode='r', encoding='utf8') as file:
|
||||
for line in file:
|
||||
if not limit or len(data) < limit:
|
||||
fields = line.replace('\n', "").split(sep='|')
|
||||
article_id = fields[0]
|
||||
alias = fields[1]
|
||||
wp_title = fields[2]
|
||||
start = fields[3]
|
||||
end = fields[4]
|
||||
|
||||
if dev == is_dev(article_id) and article_id != "article_id" and article_id not in skip_articles:
|
||||
if not current_doc or (current_article_id != article_id):
|
||||
# parse the new article text
|
||||
file_name = article_id + ".txt"
|
||||
try:
|
||||
with open(os.path.join(training_dir, file_name), mode="r", encoding='utf8') as f:
|
||||
text = f.read()
|
||||
if len(text) < 30000: # threshold for convenience / speed of processing
|
||||
current_doc = nlp(text)
|
||||
current_article_id = article_id
|
||||
ents_by_offset = dict()
|
||||
for ent in current_doc.ents:
|
||||
sent_length = len(ent.sent)
|
||||
# custom filtering to avoid too long or too short sentences
|
||||
if 5 < sent_length < 100:
|
||||
ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)] = ent
|
||||
else:
|
||||
skip_articles.add(article_id)
|
||||
current_doc = None
|
||||
except Exception as e:
|
||||
print("Problem parsing article", article_id, e)
|
||||
skip_articles.add(article_id)
|
||||
raise e
|
||||
|
||||
# repeat checking this condition in case an exception was thrown
|
||||
if current_doc and (current_article_id == article_id):
|
||||
found_ent = ents_by_offset.get(start + "_" + end, None)
|
||||
if found_ent:
|
||||
if found_ent.text != alias:
|
||||
skip_articles.add(article_id)
|
||||
current_doc = None
|
||||
else:
|
||||
sent = found_ent.sent.as_doc()
|
||||
# currently feeding the gold data one entity per sentence at a time
|
||||
gold_start = int(start) - found_ent.sent.start_char
|
||||
gold_end = int(end) - found_ent.sent.start_char
|
||||
gold_entities = [(gold_start, gold_end, wp_title)]
|
||||
gold = GoldParse(doc=sent, links=gold_entities)
|
||||
data.append((sent, gold))
|
||||
total_entities += 1
|
||||
if len(data) % 2500 == 0:
|
||||
print(" -read", total_entities, "entities")
|
||||
|
||||
print(" -read", total_entities, "entities")
|
||||
return data
|
119
bin/wiki_entity_linking/wikidata_processor.py
Normal file
119
bin/wiki_entity_linking/wikidata_processor.py
Normal file
|
@ -0,0 +1,119 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import bz2
|
||||
import json
|
||||
import datetime
|
||||
|
||||
|
||||
def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
||||
# Read the JSON wiki data and parse out the entities. Takes about 7u30 to parse 55M lines.
|
||||
# get latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
||||
|
||||
lang = 'en'
|
||||
site_filter = 'enwiki'
|
||||
|
||||
# properties filter (currently disabled to get ALL data)
|
||||
prop_filter = dict()
|
||||
# prop_filter = {'P31': {'Q5', 'Q15632617'}} # currently defined as OR: one property suffices to be selected
|
||||
|
||||
title_to_id = dict()
|
||||
id_to_descr = dict()
|
||||
|
||||
# parse appropriate fields - depending on what we need in the KB
|
||||
parse_properties = False
|
||||
parse_sitelinks = True
|
||||
parse_labels = False
|
||||
parse_descriptions = True
|
||||
parse_aliases = False
|
||||
parse_claims = False
|
||||
|
||||
with bz2.open(wikidata_file, mode='rb') as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
while line and (not limit or cnt < limit):
|
||||
if cnt % 500000 == 0:
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of WikiData dump")
|
||||
clean_line = line.strip()
|
||||
if clean_line.endswith(b","):
|
||||
clean_line = clean_line[:-1]
|
||||
if len(clean_line) > 1:
|
||||
obj = json.loads(clean_line)
|
||||
entry_type = obj["type"]
|
||||
|
||||
if entry_type == "item":
|
||||
# filtering records on their properties (currently disabled to get ALL data)
|
||||
# keep = False
|
||||
keep = True
|
||||
|
||||
claims = obj["claims"]
|
||||
if parse_claims:
|
||||
for prop, value_set in prop_filter.items():
|
||||
claim_property = claims.get(prop, None)
|
||||
if claim_property:
|
||||
for cp in claim_property:
|
||||
cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
|
||||
cp_rank = cp['rank']
|
||||
if cp_rank != "deprecated" and cp_id in value_set:
|
||||
keep = True
|
||||
|
||||
if keep:
|
||||
unique_id = obj["id"]
|
||||
|
||||
if to_print:
|
||||
print("ID:", unique_id)
|
||||
print("type:", entry_type)
|
||||
|
||||
# parsing all properties that refer to other entities
|
||||
if parse_properties:
|
||||
for prop, claim_property in claims.items():
|
||||
cp_dicts = [cp['mainsnak']['datavalue'].get('value') for cp in claim_property
|
||||
if cp['mainsnak'].get('datavalue')]
|
||||
cp_values = [cp_dict.get('id') for cp_dict in cp_dicts if isinstance(cp_dict, dict)
|
||||
if cp_dict.get('id') is not None]
|
||||
if cp_values:
|
||||
if to_print:
|
||||
print("prop:", prop, cp_values)
|
||||
|
||||
found_link = False
|
||||
if parse_sitelinks:
|
||||
site_value = obj["sitelinks"].get(site_filter, None)
|
||||
if site_value:
|
||||
site = site_value['title']
|
||||
if to_print:
|
||||
print(site_filter, ":", site)
|
||||
title_to_id[site] = unique_id
|
||||
found_link = True
|
||||
|
||||
if parse_labels:
|
||||
labels = obj["labels"]
|
||||
if labels:
|
||||
lang_label = labels.get(lang, None)
|
||||
if lang_label:
|
||||
if to_print:
|
||||
print("label (" + lang + "):", lang_label["value"])
|
||||
|
||||
if found_link and parse_descriptions:
|
||||
descriptions = obj["descriptions"]
|
||||
if descriptions:
|
||||
lang_descr = descriptions.get(lang, None)
|
||||
if lang_descr:
|
||||
if to_print:
|
||||
print("description (" + lang + "):", lang_descr["value"])
|
||||
id_to_descr[unique_id] = lang_descr["value"]
|
||||
|
||||
if parse_aliases:
|
||||
aliases = obj["aliases"]
|
||||
if aliases:
|
||||
lang_aliases = aliases.get(lang, None)
|
||||
if lang_aliases:
|
||||
for item in lang_aliases:
|
||||
if to_print:
|
||||
print("alias (" + lang + "):", item["value"])
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
|
||||
return title_to_id, id_to_descr
|
182
bin/wiki_entity_linking/wikipedia_processor.py
Normal file
182
bin/wiki_entity_linking/wikipedia_processor.py
Normal file
|
@ -0,0 +1,182 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import re
|
||||
import bz2
|
||||
import csv
|
||||
import datetime
|
||||
|
||||
"""
|
||||
Process a Wikipedia dump to calculate entity frequencies and prior probabilities in combination with certain mentions.
|
||||
Write these results to file for downstream KB and training data generation.
|
||||
"""
|
||||
|
||||
map_alias_to_link = dict()
|
||||
|
||||
# these will/should be matched ignoring case
|
||||
wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons",
|
||||
"d", "dbdump", "download", "Draft", "Education", "Foundation",
|
||||
"Gadget", "Gadget definition", "gerrit", "File", "Help", "Image", "Incubator",
|
||||
"m", "mail", "mailarchive", "media", "MediaWiki", "MediaWiki talk", "Mediawikiwiki",
|
||||
"MediaZilla", "Meta", "Metawikipedia", "Module",
|
||||
"mw", "n", "nost", "oldwikisource", "outreach", "outreachwiki", "otrs", "OTRSwiki",
|
||||
"Portal", "phab", "Phabricator", "Project", "q", "quality", "rev",
|
||||
"s", "spcom", "Special", "species", "Strategy", "sulutil", "svn",
|
||||
"Talk", "Template", "Template talk", "Testwiki", "ticket", "TimedText", "Toollabs", "tools",
|
||||
"tswiki", "User", "User talk", "v", "voy",
|
||||
"w", "Wikibooks", "Wikidata", "wikiHow", "Wikinvest", "wikilivres", "Wikimedia", "Wikinews",
|
||||
"Wikipedia", "Wikipedia talk", "Wikiquote", "Wikisource", "Wikispecies", "Wikitech",
|
||||
"Wikiversity", "Wikivoyage", "wikt", "wiktionary", "wmf", "wmania", "WP"]
|
||||
|
||||
# find the links
|
||||
link_regex = re.compile(r'\[\[[^\[\]]*\]\]')
|
||||
|
||||
# match on interwiki links, e.g. `en:` or `:fr:`
|
||||
ns_regex = r":?" + "[a-z][a-z]" + ":"
|
||||
|
||||
# match on Namespace: optionally preceded by a :
|
||||
for ns in wiki_namespaces:
|
||||
ns_regex += "|" + ":?" + ns + ":"
|
||||
|
||||
ns_regex = re.compile(ns_regex, re.IGNORECASE)
|
||||
|
||||
|
||||
def read_wikipedia_prior_probs(wikipedia_input, prior_prob_output):
|
||||
"""
|
||||
Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities.
|
||||
The full file takes about 2h to parse 1100M lines.
|
||||
It works relatively fast because it runs line by line, irrelevant of which article the intrawiki is from.
|
||||
"""
|
||||
with bz2.open(wikipedia_input, mode='rb') as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
while line:
|
||||
if cnt % 5000000 == 0:
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump")
|
||||
clean_line = line.strip().decode("utf-8")
|
||||
|
||||
aliases, entities, normalizations = get_wp_links(clean_line)
|
||||
for alias, entity, norm in zip(aliases, entities, normalizations):
|
||||
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
||||
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
||||
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
|
||||
# write all aliases and their entities and count occurrences to file
|
||||
with open(prior_prob_output, mode='w', encoding='utf8') as outputfile:
|
||||
outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n")
|
||||
for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]):
|
||||
for entity, count in sorted(alias_dict.items(), key=lambda x: x[1], reverse=True):
|
||||
outputfile.write(alias + "|" + str(count) + "|" + entity + "\n")
|
||||
|
||||
|
||||
def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True):
|
||||
alias = alias.strip()
|
||||
entity = entity.strip()
|
||||
|
||||
# remove everything after # as this is not part of the title but refers to a specific paragraph
|
||||
if normalize_entity:
|
||||
# wikipedia titles are always capitalized
|
||||
entity = _capitalize_first(entity.split("#")[0])
|
||||
if normalize_alias:
|
||||
alias = alias.split("#")[0]
|
||||
|
||||
if alias and entity:
|
||||
alias_dict = map_alias_to_link.get(alias, dict())
|
||||
entity_count = alias_dict.get(entity, 0)
|
||||
alias_dict[entity] = entity_count + 1
|
||||
map_alias_to_link[alias] = alias_dict
|
||||
|
||||
|
||||
def get_wp_links(text):
|
||||
aliases = []
|
||||
entities = []
|
||||
normalizations = []
|
||||
|
||||
matches = link_regex.findall(text)
|
||||
for match in matches:
|
||||
match = match[2:][:-2].replace("_", " ").strip()
|
||||
|
||||
if ns_regex.match(match):
|
||||
pass # ignore namespaces at the beginning of the string
|
||||
|
||||
# this is a simple [[link]], with the alias the same as the mention
|
||||
elif "|" not in match:
|
||||
aliases.append(match)
|
||||
entities.append(match)
|
||||
normalizations.append(True)
|
||||
|
||||
# in wiki format, the link is written as [[entity|alias]]
|
||||
else:
|
||||
splits = match.split("|")
|
||||
entity = splits[0].strip()
|
||||
alias = splits[1].strip()
|
||||
# specific wiki format [[alias (specification)|]]
|
||||
if len(alias) == 0 and "(" in entity:
|
||||
alias = entity.split("(")[0]
|
||||
aliases.append(alias)
|
||||
entities.append(entity)
|
||||
normalizations.append(False)
|
||||
else:
|
||||
aliases.append(alias)
|
||||
entities.append(entity)
|
||||
normalizations.append(False)
|
||||
|
||||
return aliases, entities, normalizations
|
||||
|
||||
|
||||
def _capitalize_first(text):
|
||||
if not text:
|
||||
return None
|
||||
result = text[0].capitalize()
|
||||
if len(result) > 0:
|
||||
result += text[1:]
|
||||
return result
|
||||
|
||||
|
||||
def write_entity_counts(prior_prob_input, count_output, to_print=False):
|
||||
# Write entity counts for quick access later
|
||||
entity_to_count = dict()
|
||||
total_count = 0
|
||||
|
||||
with open(prior_prob_input, mode='r', encoding='utf8') as prior_file:
|
||||
# skip header
|
||||
prior_file.readline()
|
||||
line = prior_file.readline()
|
||||
|
||||
while line:
|
||||
splits = line.replace('\n', "").split(sep='|')
|
||||
# alias = splits[0]
|
||||
count = int(splits[1])
|
||||
entity = splits[2]
|
||||
|
||||
current_count = entity_to_count.get(entity, 0)
|
||||
entity_to_count[entity] = current_count + count
|
||||
|
||||
total_count += count
|
||||
|
||||
line = prior_file.readline()
|
||||
|
||||
with open(count_output, mode='w', encoding='utf8') as entity_file:
|
||||
entity_file.write("entity" + "|" + "count" + "\n")
|
||||
for entity, count in entity_to_count.items():
|
||||
entity_file.write(entity + "|" + str(count) + "\n")
|
||||
|
||||
if to_print:
|
||||
for entity, count in entity_to_count.items():
|
||||
print("Entity count:", entity, count)
|
||||
print("Total count:", total_count)
|
||||
|
||||
|
||||
def get_all_frequencies(count_input):
|
||||
entity_to_count = dict()
|
||||
with open(count_input, 'r', encoding='utf8') as csvfile:
|
||||
csvreader = csv.reader(csvfile, delimiter='|')
|
||||
# skip header
|
||||
next(csvreader)
|
||||
for row in csvreader:
|
||||
entity_to_count[row[0]] = int(row[1])
|
||||
|
||||
return entity_to_count
|
||||
|
|
@ -51,7 +51,6 @@ def filter_spans(spans):
|
|||
|
||||
def extract_currency_relations(doc):
|
||||
# Merge entities and noun chunks into one token
|
||||
seen_tokens = set()
|
||||
spans = list(doc.ents) + list(doc.noun_chunks)
|
||||
spans = filter_spans(spans)
|
||||
with doc.retokenize() as retokenizer:
|
||||
|
|
|
@ -9,26 +9,26 @@ from spacy.kb import KnowledgeBase
|
|||
|
||||
|
||||
def create_kb(vocab):
|
||||
kb = KnowledgeBase(vocab=vocab)
|
||||
kb = KnowledgeBase(vocab=vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
entity_0 = "Q1004791_Douglas"
|
||||
print("adding entity", entity_0)
|
||||
kb.add_entity(entity=entity_0, prob=0.5)
|
||||
kb.add_entity(entity=entity_0, prob=0.5, entity_vector=[0])
|
||||
|
||||
entity_1 = "Q42_Douglas_Adams"
|
||||
print("adding entity", entity_1)
|
||||
kb.add_entity(entity=entity_1, prob=0.5)
|
||||
kb.add_entity(entity=entity_1, prob=0.5, entity_vector=[1])
|
||||
|
||||
entity_2 = "Q5301561_Douglas_Haig"
|
||||
print("adding entity", entity_2)
|
||||
kb.add_entity(entity=entity_2, prob=0.5)
|
||||
kb.add_entity(entity=entity_2, prob=0.5, entity_vector=[2])
|
||||
|
||||
# adding aliases
|
||||
print()
|
||||
alias_0 = "Douglas"
|
||||
print("adding alias", alias_0)
|
||||
kb.add_alias(alias=alias_0, entities=[entity_0, entity_1, entity_2], probabilities=[0.1, 0.6, 0.2])
|
||||
kb.add_alias(alias=alias_0, entities=[entity_0, entity_1, entity_2], probabilities=[0.6, 0.1, 0.2])
|
||||
|
||||
alias_1 = "Douglas Adams"
|
||||
print("adding alias", alias_1)
|
||||
|
@ -41,8 +41,12 @@ def create_kb(vocab):
|
|||
|
||||
|
||||
def add_el(kb, nlp):
|
||||
el_pipe = nlp.create_pipe(name='entity_linker', config={"kb": kb})
|
||||
el_pipe = nlp.create_pipe(name='entity_linker', config={"context_width": 64})
|
||||
el_pipe.set_kb(kb)
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
nlp.begin_training()
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
|
||||
for alias in ["Douglas Adams", "Douglas"]:
|
||||
candidates = nlp.linker.kb.get_candidates(alias)
|
||||
|
@ -66,6 +70,6 @@ def add_el(kb, nlp):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
nlp = spacy.load('en_core_web_sm')
|
||||
my_kb = create_kb(nlp.vocab)
|
||||
add_el(my_kb, nlp)
|
||||
my_nlp = spacy.load('en_core_web_sm')
|
||||
my_kb = create_kb(my_nlp.vocab)
|
||||
add_el(my_kb, my_nlp)
|
||||
|
|
442
examples/pipeline/wikidata_entity_linking.py
Normal file
442
examples/pipeline/wikidata_entity_linking.py
Normal file
|
@ -0,0 +1,442 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import random
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
|
||||
from bin.wiki_entity_linking import training_set_creator, kb_creator, wikipedia_processor as wp
|
||||
from bin.wiki_entity_linking.kb_creator import DESC_WIDTH
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
"""
|
||||
Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm.
|
||||
"""
|
||||
|
||||
ROOT_DIR = Path("C:/Users/Sofie/Documents/data/")
|
||||
OUTPUT_DIR = ROOT_DIR / 'wikipedia'
|
||||
TRAINING_DIR = OUTPUT_DIR / 'training_data_nel'
|
||||
|
||||
PRIOR_PROB = OUTPUT_DIR / 'prior_prob.csv'
|
||||
ENTITY_COUNTS = OUTPUT_DIR / 'entity_freq.csv'
|
||||
ENTITY_DEFS = OUTPUT_DIR / 'entity_defs.csv'
|
||||
ENTITY_DESCR = OUTPUT_DIR / 'entity_descriptions.csv'
|
||||
|
||||
KB_FILE = OUTPUT_DIR / 'kb_1' / 'kb'
|
||||
NLP_1_DIR = OUTPUT_DIR / 'nlp_1'
|
||||
NLP_2_DIR = OUTPUT_DIR / 'nlp_2'
|
||||
|
||||
# get latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
||||
WIKIDATA_JSON = ROOT_DIR / 'wikidata' / 'wikidata-20190304-all.json.bz2'
|
||||
|
||||
# get enwiki-latest-pages-articles-multistream.xml.bz2 from https://dumps.wikimedia.org/enwiki/latest/
|
||||
ENWIKI_DUMP = ROOT_DIR / 'wikipedia' / 'enwiki-20190320-pages-articles-multistream.xml.bz2'
|
||||
|
||||
# KB construction parameters
|
||||
MAX_CANDIDATES = 10
|
||||
MIN_ENTITY_FREQ = 20
|
||||
MIN_PAIR_OCC = 5
|
||||
|
||||
# model training parameters
|
||||
EPOCHS = 10
|
||||
DROPOUT = 0.5
|
||||
LEARN_RATE = 0.005
|
||||
L2 = 1e-6
|
||||
CONTEXT_WIDTH = 128
|
||||
|
||||
|
||||
def run_pipeline():
|
||||
# set the appropriate booleans to define which parts of the pipeline should be re(run)
|
||||
print("START", datetime.datetime.now())
|
||||
print()
|
||||
nlp_1 = spacy.load('en_core_web_lg')
|
||||
nlp_2 = None
|
||||
kb_2 = None
|
||||
|
||||
# one-time methods to create KB and write to file
|
||||
to_create_prior_probs = False
|
||||
to_create_entity_counts = False
|
||||
to_create_kb = False
|
||||
|
||||
# read KB back in from file
|
||||
to_read_kb = True
|
||||
to_test_kb = False
|
||||
|
||||
# create training dataset
|
||||
create_wp_training = False
|
||||
|
||||
# train the EL pipe
|
||||
train_pipe = True
|
||||
measure_performance = True
|
||||
|
||||
# test the EL pipe on a simple example
|
||||
to_test_pipeline = True
|
||||
|
||||
# write the NLP object, read back in and test again
|
||||
to_write_nlp = True
|
||||
to_read_nlp = True
|
||||
test_from_file = False
|
||||
|
||||
# STEP 1 : create prior probabilities from WP (run only once)
|
||||
if to_create_prior_probs:
|
||||
print("STEP 1: to_create_prior_probs", datetime.datetime.now())
|
||||
wp.read_wikipedia_prior_probs(wikipedia_input=ENWIKI_DUMP, prior_prob_output=PRIOR_PROB)
|
||||
print()
|
||||
|
||||
# STEP 2 : deduce entity frequencies from WP (run only once)
|
||||
if to_create_entity_counts:
|
||||
print("STEP 2: to_create_entity_counts", datetime.datetime.now())
|
||||
wp.write_entity_counts(prior_prob_input=PRIOR_PROB, count_output=ENTITY_COUNTS, to_print=False)
|
||||
print()
|
||||
|
||||
# STEP 3 : create KB and write to file (run only once)
|
||||
if to_create_kb:
|
||||
print("STEP 3a: to_create_kb", datetime.datetime.now())
|
||||
kb_1 = kb_creator.create_kb(nlp_1,
|
||||
max_entities_per_alias=MAX_CANDIDATES,
|
||||
min_entity_freq=MIN_ENTITY_FREQ,
|
||||
min_occ=MIN_PAIR_OCC,
|
||||
entity_def_output=ENTITY_DEFS,
|
||||
entity_descr_output=ENTITY_DESCR,
|
||||
count_input=ENTITY_COUNTS,
|
||||
prior_prob_input=PRIOR_PROB,
|
||||
wikidata_input=WIKIDATA_JSON)
|
||||
print("kb entities:", kb_1.get_size_entities())
|
||||
print("kb aliases:", kb_1.get_size_aliases())
|
||||
print()
|
||||
|
||||
print("STEP 3b: write KB and NLP", datetime.datetime.now())
|
||||
kb_1.dump(KB_FILE)
|
||||
nlp_1.to_disk(NLP_1_DIR)
|
||||
print()
|
||||
|
||||
# STEP 4 : read KB back in from file
|
||||
if to_read_kb:
|
||||
print("STEP 4: to_read_kb", datetime.datetime.now())
|
||||
nlp_2 = spacy.load(NLP_1_DIR)
|
||||
kb_2 = KnowledgeBase(vocab=nlp_2.vocab, entity_vector_length=DESC_WIDTH)
|
||||
kb_2.load_bulk(KB_FILE)
|
||||
print("kb entities:", kb_2.get_size_entities())
|
||||
print("kb aliases:", kb_2.get_size_aliases())
|
||||
print()
|
||||
|
||||
# test KB
|
||||
if to_test_kb:
|
||||
check_kb(kb_2)
|
||||
print()
|
||||
|
||||
# STEP 5: create a training dataset from WP
|
||||
if create_wp_training:
|
||||
print("STEP 5: create training dataset", datetime.datetime.now())
|
||||
training_set_creator.create_training(wikipedia_input=ENWIKI_DUMP,
|
||||
entity_def_input=ENTITY_DEFS,
|
||||
training_output=TRAINING_DIR)
|
||||
|
||||
# STEP 6: create and train the entity linking pipe
|
||||
if train_pipe:
|
||||
print("STEP 6: training Entity Linking pipe", datetime.datetime.now())
|
||||
type_to_int = {label: i for i, label in enumerate(nlp_2.entity.labels)}
|
||||
print(" -analysing", len(type_to_int), "different entity types")
|
||||
el_pipe = nlp_2.create_pipe(name='entity_linker',
|
||||
config={"context_width": CONTEXT_WIDTH,
|
||||
"pretrained_vectors": nlp_2.vocab.vectors.name,
|
||||
"type_to_int": type_to_int})
|
||||
el_pipe.set_kb(kb_2)
|
||||
nlp_2.add_pipe(el_pipe, last=True)
|
||||
|
||||
other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"]
|
||||
with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking
|
||||
optimizer = nlp_2.begin_training()
|
||||
optimizer.learn_rate = LEARN_RATE
|
||||
optimizer.L2 = L2
|
||||
|
||||
# define the size (nr of entities) of training and dev set
|
||||
train_limit = 5000
|
||||
dev_limit = 5000
|
||||
|
||||
train_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=False,
|
||||
limit=train_limit)
|
||||
|
||||
print("Training on", len(train_data), "articles")
|
||||
print()
|
||||
|
||||
dev_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=True,
|
||||
limit=dev_limit)
|
||||
|
||||
print("Dev testing on", len(dev_data), "articles")
|
||||
print()
|
||||
|
||||
if not train_data:
|
||||
print("Did not find any training data")
|
||||
else:
|
||||
for itn in range(EPOCHS):
|
||||
random.shuffle(train_data)
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
||||
batchnr = 0
|
||||
|
||||
with nlp_2.disable_pipes(*other_pipes):
|
||||
for batch in batches:
|
||||
try:
|
||||
docs, golds = zip(*batch)
|
||||
nlp_2.update(
|
||||
docs,
|
||||
golds,
|
||||
sgd=optimizer,
|
||||
drop=DROPOUT,
|
||||
losses=losses,
|
||||
)
|
||||
batchnr += 1
|
||||
except Exception as e:
|
||||
print("Error updating batch:", e)
|
||||
|
||||
if batchnr > 0:
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 1
|
||||
dev_acc_context, dev_acc_context_dict = _measure_accuracy(dev_data, el_pipe)
|
||||
losses['entity_linker'] = losses['entity_linker'] / batchnr
|
||||
print("Epoch, train loss", itn, round(losses['entity_linker'], 2),
|
||||
" / dev acc avg", round(dev_acc_context, 3))
|
||||
|
||||
# STEP 7: measure the performance of our trained pipe on an independent dev set
|
||||
if len(dev_data) and measure_performance:
|
||||
print()
|
||||
print("STEP 7: performance measurement of Entity Linking pipe", datetime.datetime.now())
|
||||
print()
|
||||
|
||||
counts, acc_r, acc_r_label, acc_p, acc_p_label, acc_o, acc_o_label = _measure_baselines(dev_data, kb_2)
|
||||
print("dev counts:", sorted(counts.items(), key=lambda x: x[0]))
|
||||
print("dev acc oracle:", round(acc_o, 3), [(x, round(y, 3)) for x, y in acc_o_label.items()])
|
||||
print("dev acc random:", round(acc_r, 3), [(x, round(y, 3)) for x, y in acc_r_label.items()])
|
||||
print("dev acc prior:", round(acc_p, 3), [(x, round(y, 3)) for x, y in acc_p_label.items()])
|
||||
|
||||
# using only context
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 0
|
||||
dev_acc_context, dev_acc_context_dict = _measure_accuracy(dev_data, el_pipe)
|
||||
print("dev acc context avg:", round(dev_acc_context, 3),
|
||||
[(x, round(y, 3)) for x, y in dev_acc_context_dict.items()])
|
||||
|
||||
# measuring combined accuracy (prior + context)
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 1
|
||||
dev_acc_combo, dev_acc_combo_dict = _measure_accuracy(dev_data, el_pipe, error_analysis=False)
|
||||
print("dev acc combo avg:", round(dev_acc_combo, 3),
|
||||
[(x, round(y, 3)) for x, y in dev_acc_combo_dict.items()])
|
||||
|
||||
# STEP 8: apply the EL pipe on a toy example
|
||||
if to_test_pipeline:
|
||||
print()
|
||||
print("STEP 8: applying Entity Linking to toy example", datetime.datetime.now())
|
||||
print()
|
||||
run_el_toy_example(nlp=nlp_2)
|
||||
|
||||
# STEP 9: write the NLP pipeline (including entity linker) to file
|
||||
if to_write_nlp:
|
||||
print()
|
||||
print("STEP 9: testing NLP IO", datetime.datetime.now())
|
||||
print()
|
||||
print("writing to", NLP_2_DIR)
|
||||
nlp_2.to_disk(NLP_2_DIR)
|
||||
print()
|
||||
|
||||
# verify that the IO has gone correctly
|
||||
if to_read_nlp:
|
||||
print("reading from", NLP_2_DIR)
|
||||
nlp_3 = spacy.load(NLP_2_DIR)
|
||||
|
||||
print("running toy example with NLP 3")
|
||||
run_el_toy_example(nlp=nlp_3)
|
||||
|
||||
# testing performance with an NLP model from file
|
||||
if test_from_file:
|
||||
nlp_2 = spacy.load(NLP_1_DIR)
|
||||
nlp_3 = spacy.load(NLP_2_DIR)
|
||||
el_pipe = nlp_3.get_pipe("entity_linker")
|
||||
|
||||
dev_limit = 5000
|
||||
dev_data = training_set_creator.read_training(nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=True,
|
||||
limit=dev_limit)
|
||||
|
||||
print("Dev testing from file on", len(dev_data), "articles")
|
||||
print()
|
||||
|
||||
dev_acc_combo, dev_acc_combo_dict = _measure_accuracy(dev_data, el_pipe=el_pipe, error_analysis=False)
|
||||
print("dev acc combo avg:", round(dev_acc_combo, 3),
|
||||
[(x, round(y, 3)) for x, y in dev_acc_combo_dict.items()])
|
||||
|
||||
print()
|
||||
print("STOP", datetime.datetime.now())
|
||||
|
||||
|
||||
def _measure_accuracy(data, el_pipe=None, error_analysis=False):
|
||||
# If the docs in the data require further processing with an entity linker, set el_pipe
|
||||
correct_by_label = dict()
|
||||
incorrect_by_label = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
if el_pipe is not None:
|
||||
docs = list(el_pipe.pipe(docs))
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity in gold.links:
|
||||
start, end, gold_kb = entity
|
||||
correct_entries_per_article[str(start) + "-" + str(end)] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
ent_label = ent.label_
|
||||
pred_entity = ent.kb_id_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
gold_entity = correct_entries_per_article.get(str(start) + "-" + str(end), None)
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
if gold_entity == pred_entity:
|
||||
correct = correct_by_label.get(ent_label, 0)
|
||||
correct_by_label[ent_label] = correct + 1
|
||||
else:
|
||||
incorrect = incorrect_by_label.get(ent_label, 0)
|
||||
incorrect_by_label[ent_label] = incorrect + 1
|
||||
if error_analysis:
|
||||
print(ent.text, "in", doc)
|
||||
print("Predicted", pred_entity, "should have been", gold_entity)
|
||||
print()
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc, acc_by_label = calculate_acc(correct_by_label, incorrect_by_label)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def _measure_baselines(data, kb):
|
||||
# Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound
|
||||
counts_by_label = dict()
|
||||
|
||||
random_correct_by_label = dict()
|
||||
random_incorrect_by_label = dict()
|
||||
|
||||
oracle_correct_by_label = dict()
|
||||
oracle_incorrect_by_label = dict()
|
||||
|
||||
prior_correct_by_label = dict()
|
||||
prior_incorrect_by_label = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity in gold.links:
|
||||
start, end, gold_kb = entity
|
||||
correct_entries_per_article[str(start) + "-" + str(end)] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
ent_label = ent.label_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
gold_entity = correct_entries_per_article.get(str(start) + "-" + str(end), None)
|
||||
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
counts_by_label[ent_label] = counts_by_label.get(ent_label, 0) + 1
|
||||
candidates = kb.get_candidates(ent.text)
|
||||
oracle_candidate = ""
|
||||
best_candidate = ""
|
||||
random_candidate = ""
|
||||
if candidates:
|
||||
scores = []
|
||||
|
||||
for c in candidates:
|
||||
scores.append(c.prior_prob)
|
||||
if c.entity_ == gold_entity:
|
||||
oracle_candidate = c.entity_
|
||||
|
||||
best_index = scores.index(max(scores))
|
||||
best_candidate = candidates[best_index].entity_
|
||||
random_candidate = random.choice(candidates).entity_
|
||||
|
||||
if gold_entity == best_candidate:
|
||||
prior_correct_by_label[ent_label] = prior_correct_by_label.get(ent_label, 0) + 1
|
||||
else:
|
||||
prior_incorrect_by_label[ent_label] = prior_incorrect_by_label.get(ent_label, 0) + 1
|
||||
|
||||
if gold_entity == random_candidate:
|
||||
random_correct_by_label[ent_label] = random_correct_by_label.get(ent_label, 0) + 1
|
||||
else:
|
||||
random_incorrect_by_label[ent_label] = random_incorrect_by_label.get(ent_label, 0) + 1
|
||||
|
||||
if gold_entity == oracle_candidate:
|
||||
oracle_correct_by_label[ent_label] = oracle_correct_by_label.get(ent_label, 0) + 1
|
||||
else:
|
||||
oracle_incorrect_by_label[ent_label] = oracle_incorrect_by_label.get(ent_label, 0) + 1
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc_prior, acc_prior_by_label = calculate_acc(prior_correct_by_label, prior_incorrect_by_label)
|
||||
acc_rand, acc_rand_by_label = calculate_acc(random_correct_by_label, random_incorrect_by_label)
|
||||
acc_oracle, acc_oracle_by_label = calculate_acc(oracle_correct_by_label, oracle_incorrect_by_label)
|
||||
|
||||
return counts_by_label, acc_rand, acc_rand_by_label, acc_prior, acc_prior_by_label, acc_oracle, acc_oracle_by_label
|
||||
|
||||
|
||||
def calculate_acc(correct_by_label, incorrect_by_label):
|
||||
acc_by_label = dict()
|
||||
total_correct = 0
|
||||
total_incorrect = 0
|
||||
all_keys = set()
|
||||
all_keys.update(correct_by_label.keys())
|
||||
all_keys.update(incorrect_by_label.keys())
|
||||
for label in sorted(all_keys):
|
||||
correct = correct_by_label.get(label, 0)
|
||||
incorrect = incorrect_by_label.get(label, 0)
|
||||
total_correct += correct
|
||||
total_incorrect += incorrect
|
||||
if correct == incorrect == 0:
|
||||
acc_by_label[label] = 0
|
||||
else:
|
||||
acc_by_label[label] = correct / (correct + incorrect)
|
||||
acc = 0
|
||||
if not (total_correct == total_incorrect == 0):
|
||||
acc = total_correct / (total_correct + total_incorrect)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def check_kb(kb):
|
||||
for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"):
|
||||
candidates = kb.get_candidates(mention)
|
||||
|
||||
print("generating candidates for " + mention + " :")
|
||||
for c in candidates:
|
||||
print(" ", c.prior_prob, c.alias_, "-->", c.entity_ + " (freq=" + str(c.entity_freq) + ")")
|
||||
print()
|
||||
|
||||
|
||||
def run_el_toy_example(nlp):
|
||||
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
|
||||
"Douglas reminds us to always bring our towel, even in China or Brazil. " \
|
||||
"The main character in Doug's novel is the man Arthur Dent, " \
|
||||
"but Douglas doesn't write about George Washington or Homer Simpson."
|
||||
doc = nlp(text)
|
||||
print(text)
|
||||
for ent in doc.ents:
|
||||
print(" ent", ent.text, ent.label_, ent.kb_id_)
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_pipeline()
|
|
@ -5,6 +5,6 @@ requires = ["setuptools",
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=2.0.1,<2.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc==7.0.0.dev6",
|
||||
"thinc>=7.0.8,<7.1.0",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Our libraries
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=2.0.1,<2.1.0
|
||||
thinc>=7.0.2,<7.1.0
|
||||
thinc>=7.0.8,<7.1.0
|
||||
blis>=0.2.2,<0.3.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.2.0,<1.1.0
|
||||
|
|
3
setup.py
3
setup.py
|
@ -228,7 +228,7 @@ def setup_package():
|
|||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=2.0.1,<2.1.0",
|
||||
"thinc>=7.0.2,<7.1.0",
|
||||
"thinc>=7.0.8,<7.1.0",
|
||||
"blis>=0.2.2,<0.3.0",
|
||||
"plac<1.0.0,>=0.9.6",
|
||||
"requests>=2.13.0,<3.0.0",
|
||||
|
@ -246,6 +246,7 @@ def setup_package():
|
|||
"cuda100": ["thinc_gpu_ops>=0.0.1,<0.1.0", "cupy-cuda100>=5.0.0b4"],
|
||||
# Language tokenizers with external dependencies
|
||||
"ja": ["mecab-python3==0.7"],
|
||||
"ko": ["natto-py==0.9.0"],
|
||||
},
|
||||
python_requires=">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*",
|
||||
classifiers=[
|
||||
|
|
59
spacy/_ml.py
59
spacy/_ml.py
|
@ -24,7 +24,7 @@ from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|||
import thinc.extra.load_nlp
|
||||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
|
||||
from .errors import Errors
|
||||
from .errors import Errors, user_warning, Warnings
|
||||
from . import util
|
||||
|
||||
try:
|
||||
|
@ -299,7 +299,17 @@ def link_vectors_to_models(vocab):
|
|||
data = ops.asarray(vectors.data)
|
||||
# Set an entry here, so that vectors are accessed by StaticVectors
|
||||
# (unideal, I know)
|
||||
thinc.extra.load_nlp.VECTORS[(ops.device, vectors.name)] = data
|
||||
key = (ops.device, vectors.name)
|
||||
if key in thinc.extra.load_nlp.VECTORS:
|
||||
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
|
||||
# This is a hack to avoid the problem in #3853. Maybe we should
|
||||
# print a warning as well?
|
||||
old_name = vectors.name
|
||||
new_name = vectors.name + "_%d" % data.shape[0]
|
||||
user_warning(Warnings.W019.format(old=old_name, new=new_name))
|
||||
vectors.name = new_name
|
||||
key = (ops.device, vectors.name)
|
||||
thinc.extra.load_nlp.VECTORS[key] = data
|
||||
|
||||
|
||||
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
||||
|
@ -652,6 +662,51 @@ def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False,
|
|||
return model
|
||||
|
||||
|
||||
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
||||
# TODO proper error
|
||||
if "entity_width" not in cfg:
|
||||
raise ValueError("entity_width not found")
|
||||
if "context_width" not in cfg:
|
||||
raise ValueError("context_width not found")
|
||||
|
||||
conv_depth = cfg.get("conv_depth", 2)
|
||||
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors") # self.nlp.vocab.vectors.name
|
||||
context_width = cfg.get("context_width")
|
||||
entity_width = cfg.get("entity_width")
|
||||
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
model = (
|
||||
Affine(entity_width, entity_width + context_width + 1 + ner_types)
|
||||
>> Affine(1, entity_width, drop_factor=0.0)
|
||||
>> logistic
|
||||
)
|
||||
|
||||
# context encoder
|
||||
tok2vec = (
|
||||
Tok2Vec(
|
||||
width=hidden_width,
|
||||
embed_size=embed_width,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
cnn_maxout_pieces=cnn_maxout_pieces,
|
||||
subword_features=True,
|
||||
conv_depth=conv_depth,
|
||||
bilstm_depth=0,
|
||||
)
|
||||
>> flatten_add_lengths
|
||||
>> Pooling(mean_pool)
|
||||
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
|
||||
>> zero_init(Affine(context_width, hidden_width))
|
||||
)
|
||||
|
||||
model.tok2vec = tok2vec
|
||||
|
||||
model.tok2vec = tok2vec
|
||||
model.tok2vec.nO = context_width
|
||||
model.nO = 1
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.0):
|
||||
ops = Model.ops
|
||||
|
|
|
@ -4,13 +4,13 @@
|
|||
# fmt: off
|
||||
|
||||
__title__ = "spacy"
|
||||
__version__ = "2.1.4"
|
||||
__version__ = "2.1.5"
|
||||
__summary__ = "Industrial-strength Natural Language Processing (NLP) with Python and Cython"
|
||||
__uri__ = "https://spacy.io"
|
||||
__author__ = "Explosion AI"
|
||||
__email__ = "contact@explosion.ai"
|
||||
__license__ = "MIT"
|
||||
__release__ = False
|
||||
__release__ = True
|
||||
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
|
|
|
@ -82,6 +82,7 @@ cdef enum attr_id_t:
|
|||
DEP
|
||||
ENT_IOB
|
||||
ENT_TYPE
|
||||
ENT_KB_ID
|
||||
HEAD
|
||||
SENT_START
|
||||
SPACY
|
||||
|
|
|
@ -84,6 +84,7 @@ IDS = {
|
|||
"DEP": DEP,
|
||||
"ENT_IOB": ENT_IOB,
|
||||
"ENT_TYPE": ENT_TYPE,
|
||||
"ENT_KB_ID": ENT_KB_ID,
|
||||
"HEAD": HEAD,
|
||||
"SENT_START": SENT_START,
|
||||
"SPACY": SPACY,
|
||||
|
|
|
@ -5,6 +5,7 @@ import plac
|
|||
import random
|
||||
import numpy
|
||||
import time
|
||||
import re
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from thinc.v2v import Affine, Maxout
|
||||
|
@ -65,6 +66,13 @@ from .train import _load_pretrained_tok2vec
|
|||
"t2v",
|
||||
Path,
|
||||
),
|
||||
epoch_start=(
|
||||
"The epoch to start counting at. Only relevant when using '--init-tok2vec' and the given weight file has been "
|
||||
"renamed. Prevents unintended overwriting of existing weight files.",
|
||||
"option",
|
||||
"es",
|
||||
int
|
||||
),
|
||||
)
|
||||
def pretrain(
|
||||
texts_loc,
|
||||
|
@ -83,6 +91,7 @@ def pretrain(
|
|||
seed=0,
|
||||
n_save_every=None,
|
||||
init_tok2vec=None,
|
||||
epoch_start=None,
|
||||
):
|
||||
"""
|
||||
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
||||
|
@ -151,9 +160,29 @@ def pretrain(
|
|||
if init_tok2vec is not None:
|
||||
components = _load_pretrained_tok2vec(nlp, init_tok2vec)
|
||||
msg.text("Loaded pretrained tok2vec for: {}".format(components))
|
||||
# Parse the epoch number from the given weight file
|
||||
model_name = re.search(r"model\d+\.bin", str(init_tok2vec))
|
||||
if model_name:
|
||||
# Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
|
||||
epoch_start = int(model_name.group(0)[5:][:-4]) + 1
|
||||
else:
|
||||
if not epoch_start:
|
||||
msg.fail(
|
||||
"You have to use the '--epoch-start' argument when using a renamed weight file for "
|
||||
"'--init-tok2vec'", exits=True
|
||||
)
|
||||
elif epoch_start < 0:
|
||||
msg.fail(
|
||||
"The argument '--epoch-start' has to be greater or equal to 0. '%d' is invalid" % epoch_start,
|
||||
exits=True
|
||||
)
|
||||
else:
|
||||
# Without '--init-tok2vec' the '--epoch-start' argument is ignored
|
||||
epoch_start = 0
|
||||
|
||||
optimizer = create_default_optimizer(model.ops)
|
||||
tracker = ProgressTracker(frequency=10000)
|
||||
msg.divider("Pre-training tok2vec layer")
|
||||
msg.divider("Pre-training tok2vec layer - starting at epoch %d" % epoch_start)
|
||||
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
||||
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
||||
|
||||
|
@ -174,7 +203,7 @@ def pretrain(
|
|||
file_.write(srsly.json_dumps(log) + "\n")
|
||||
|
||||
skip_counter = 0
|
||||
for epoch in range(n_iter):
|
||||
for epoch in range(epoch_start, n_iter + epoch_start):
|
||||
for batch_id, batch in enumerate(
|
||||
util.minibatch_by_words(((text, None) for text in texts), size=batch_size)
|
||||
):
|
||||
|
@ -272,7 +301,7 @@ def get_vectors_loss(ops, docs, prediction, objective="L2"):
|
|||
elif objective == "cosine":
|
||||
loss, d_target = get_cossim_loss(prediction, target)
|
||||
else:
|
||||
raise ValueError(Errors.E139.format(loss_func=objective))
|
||||
raise ValueError(Errors.E142.format(loss_func=objective))
|
||||
return loss, d_target
|
||||
|
||||
|
||||
|
|
|
@ -82,6 +82,8 @@ class Warnings(object):
|
|||
"parallel inference via multiprocessing.")
|
||||
W017 = ("Alias '{alias}' already exists in the Knowledge base.")
|
||||
W018 = ("Entity '{entity}' already exists in the Knowledge base.")
|
||||
W019 = ("Changing vectors name from {old} to {new}, to avoid clash with "
|
||||
"previously loaded vectors. See Issue #3853.")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
@ -399,7 +401,11 @@ class Errors(object):
|
|||
E138 = ("Invalid JSONL format for raw text '{text}'. Make sure the input includes either the "
|
||||
"`text` or `tokens` key. For more info, see the docs:\n"
|
||||
"https://spacy.io/api/cli#pretrain-jsonl")
|
||||
E139 = ("Unsupported loss_function '{loss_func}'. Use either 'L2' or 'cosine'")
|
||||
E139 = ("Knowledge base for component '{name}' not initialized. Did you forget to call set_kb()?")
|
||||
E140 = ("The list of entities, prior probabilities and entity vectors should be of equal length.")
|
||||
E141 = ("Entity vectors should be of length {required} instead of the provided {found}.")
|
||||
E142 = ("Unsupported loss_function '{loss_func}'. Use either 'L2' or 'cosine'")
|
||||
E143 = ("Labels for component '{name}' not initialized. Did you forget to call add_label()?")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -31,6 +31,7 @@ cdef class GoldParse:
|
|||
cdef public list ents
|
||||
cdef public dict brackets
|
||||
cdef public object cats
|
||||
cdef public list links
|
||||
|
||||
cdef readonly list cand_to_gold
|
||||
cdef readonly list gold_to_cand
|
||||
|
|
|
@ -427,7 +427,7 @@ cdef class GoldParse:
|
|||
|
||||
def __init__(self, doc, annot_tuples=None, words=None, tags=None,
|
||||
heads=None, deps=None, entities=None, make_projective=False,
|
||||
cats=None, **_):
|
||||
cats=None, links=None, **_):
|
||||
"""Create a GoldParse.
|
||||
|
||||
doc (Doc): The document the annotations refer to.
|
||||
|
@ -450,6 +450,8 @@ cdef class GoldParse:
|
|||
examples of a label to have the value 0.0. Labels not in the
|
||||
dictionary are treated as missing - the gradient for those labels
|
||||
will be zero.
|
||||
links (iterable): A sequence of `(start_char, end_char, kb_id)` tuples,
|
||||
representing the external ID of an entity in a knowledge base.
|
||||
RETURNS (GoldParse): The newly constructed object.
|
||||
"""
|
||||
if words is None:
|
||||
|
@ -485,6 +487,7 @@ cdef class GoldParse:
|
|||
self.c.ner = <Transition*>self.mem.alloc(len(doc), sizeof(Transition))
|
||||
|
||||
self.cats = {} if cats is None else dict(cats)
|
||||
self.links = links
|
||||
self.words = [None] * len(doc)
|
||||
self.tags = [None] * len(doc)
|
||||
self.heads = [None] * len(doc)
|
||||
|
|
170
spacy/kb.pxd
170
spacy/kb.pxd
|
@ -1,53 +1,27 @@
|
|||
"""Knowledge-base for entity or concept linking."""
|
||||
from cymem.cymem cimport Pool
|
||||
from preshed.maps cimport PreshMap
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
from libc.stdio cimport FILE
|
||||
|
||||
from spacy.vocab cimport Vocab
|
||||
from .typedefs cimport hash_t
|
||||
|
||||
|
||||
# Internal struct, for storage and disambiguation. This isn't what we return
|
||||
# to the user as the answer to "here's your entity". It's the minimum number
|
||||
# of bits we need to keep track of the answers.
|
||||
cdef struct _EntryC:
|
||||
|
||||
# The hash of this entry's unique ID and name in the kB
|
||||
hash_t entity_hash
|
||||
|
||||
# Allows retrieval of one or more vectors.
|
||||
# Each element of vector_rows should be an index into a vectors table.
|
||||
# Every entry should have the same number of vectors, so we can avoid storing
|
||||
# the number of vectors in each knowledge-base struct
|
||||
int32_t* vector_rows
|
||||
|
||||
# Allows retrieval of a struct of non-vector features. We could make this a
|
||||
# pointer, but we have 32 bits left over in the struct after prob, so we'd
|
||||
# like this to only be 32 bits. We can also set this to -1, for the common
|
||||
# case where there are no features.
|
||||
int32_t feats_row
|
||||
|
||||
# log probability of entity, based on corpus frequency
|
||||
float prob
|
||||
|
||||
|
||||
# Each alias struct stores a list of Entry pointers with their prior probabilities
|
||||
# for this specific mention/alias.
|
||||
cdef struct _AliasC:
|
||||
|
||||
# All entry candidates for this alias
|
||||
vector[int64_t] entry_indices
|
||||
|
||||
# Prior probability P(entity|alias) - should sum up to (at most) 1.
|
||||
vector[float] probs
|
||||
from .structs cimport KBEntryC, AliasC
|
||||
ctypedef vector[KBEntryC] entry_vec
|
||||
ctypedef vector[AliasC] alias_vec
|
||||
ctypedef vector[float] float_vec
|
||||
ctypedef vector[float_vec] float_matrix
|
||||
|
||||
|
||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
|
||||
cdef class Candidate:
|
||||
|
||||
cdef readonly KnowledgeBase kb
|
||||
cdef hash_t entity_hash
|
||||
cdef float entity_freq
|
||||
cdef vector[float] entity_vector
|
||||
cdef hash_t alias_hash
|
||||
cdef float prior_prob
|
||||
|
||||
|
@ -55,9 +29,10 @@ cdef class Candidate:
|
|||
cdef class KnowledgeBase:
|
||||
cdef Pool mem
|
||||
cpdef readonly Vocab vocab
|
||||
cdef int64_t entity_vector_length
|
||||
|
||||
# This maps 64bit keys (hash of unique entity string)
|
||||
# to 64bit values (position of the _EntryC struct in the _entries vector).
|
||||
# to 64bit values (position of the _KBEntryC struct in the _entries vector).
|
||||
# The PreshMap is pretty space efficient, as it uses open addressing. So
|
||||
# the only overhead is the vacancy rate, which is approximately 30%.
|
||||
cdef PreshMap _entry_index
|
||||
|
@ -66,7 +41,7 @@ cdef class KnowledgeBase:
|
|||
# over allocation.
|
||||
# In total we end up with (N*128*1.3)+(N*128*1.3) bits for N entries.
|
||||
# Storing 1m entries would take 41.6mb under this scheme.
|
||||
cdef vector[_EntryC] _entries
|
||||
cdef entry_vec _entries
|
||||
|
||||
# This maps 64bit keys (hash of unique alias string)
|
||||
# to 64bit values (position of the _AliasC struct in the _aliases_table vector).
|
||||
|
@ -76,7 +51,7 @@ cdef class KnowledgeBase:
|
|||
# should be P(entity | mention), which is pretty important to know.
|
||||
# We can pack both pieces of information into a 64-bit value, to keep things
|
||||
# efficient.
|
||||
cdef vector[_AliasC] _aliases_table
|
||||
cdef alias_vec _aliases_table
|
||||
|
||||
# This is the part which might take more space: storing various
|
||||
# categorical features for the entries, and storing vectors for disambiguation
|
||||
|
@ -87,7 +62,7 @@ cdef class KnowledgeBase:
|
|||
# model, that embeds different features of the entities into vectors. We'll
|
||||
# still want some per-entity features, like the Wikipedia text or entity
|
||||
# co-occurrence. Hopefully those vectors can be narrow, e.g. 64 dimensions.
|
||||
cdef object _vectors_table
|
||||
cdef float_matrix _vectors_table
|
||||
|
||||
# It's very useful to track categorical features, at least for output, even
|
||||
# if they're not useful in the model itself. For instance, we should be
|
||||
|
@ -96,53 +71,102 @@ cdef class KnowledgeBase:
|
|||
# optional data, we can let users configure a DB as the backend for this.
|
||||
cdef object _features_table
|
||||
|
||||
|
||||
cdef inline int64_t c_add_vector(self, vector[float] entity_vector) nogil:
|
||||
"""Add an entity vector to the vectors table."""
|
||||
cdef int64_t new_index = self._vectors_table.size()
|
||||
self._vectors_table.push_back(entity_vector)
|
||||
return new_index
|
||||
|
||||
|
||||
cdef inline int64_t c_add_entity(self, hash_t entity_hash, float prob,
|
||||
int32_t* vector_rows, int feats_row):
|
||||
"""Add an entry to the knowledge base."""
|
||||
# This is what we'll map the hash key to. It's where the entry will sit
|
||||
int32_t vector_index, int feats_row) nogil:
|
||||
"""Add an entry to the vector of entries.
|
||||
After calling this method, make sure to update also the _entry_index using the return value"""
|
||||
# This is what we'll map the entity hash key to. It's where the entry will sit
|
||||
# in the vector of entries, so we can get it later.
|
||||
cdef int64_t new_index = self._entries.size()
|
||||
self._entries.push_back(
|
||||
_EntryC(
|
||||
entity_hash=entity_hash,
|
||||
vector_rows=vector_rows,
|
||||
feats_row=feats_row,
|
||||
prob=prob
|
||||
))
|
||||
self._entry_index[entity_hash] = new_index
|
||||
|
||||
# Avoid struct initializer to enable nogil, cf https://github.com/cython/cython/issues/1642
|
||||
cdef KBEntryC entry
|
||||
entry.entity_hash = entity_hash
|
||||
entry.vector_index = vector_index
|
||||
entry.feats_row = feats_row
|
||||
entry.prob = prob
|
||||
|
||||
self._entries.push_back(entry)
|
||||
return new_index
|
||||
|
||||
cdef inline int64_t c_add_aliases(self, hash_t alias_hash, vector[int64_t] entry_indices, vector[float] probs):
|
||||
"""Connect a mention to a list of potential entities with their prior probabilities ."""
|
||||
cdef inline int64_t c_add_aliases(self, hash_t alias_hash, vector[int64_t] entry_indices, vector[float] probs) nogil:
|
||||
"""Connect a mention to a list of potential entities with their prior probabilities .
|
||||
After calling this method, make sure to update also the _alias_index using the return value"""
|
||||
# This is what we'll map the alias hash key to. It's where the alias will be defined
|
||||
# in the vector of aliases.
|
||||
cdef int64_t new_index = self._aliases_table.size()
|
||||
|
||||
self._aliases_table.push_back(
|
||||
_AliasC(
|
||||
entry_indices=entry_indices,
|
||||
probs=probs
|
||||
))
|
||||
self._alias_index[alias_hash] = new_index
|
||||
# Avoid struct initializer to enable nogil
|
||||
cdef AliasC alias
|
||||
alias.entry_indices = entry_indices
|
||||
alias.probs = probs
|
||||
|
||||
self._aliases_table.push_back(alias)
|
||||
return new_index
|
||||
|
||||
cdef inline _create_empty_vectors(self):
|
||||
cdef inline void _create_empty_vectors(self, hash_t dummy_hash) nogil:
|
||||
"""
|
||||
Making sure the first element of each vector is a dummy,
|
||||
Initializing the vectors and making sure the first element of each vector is a dummy,
|
||||
because the PreshMap maps pointing to indices in these vectors can not contain 0 as value
|
||||
cf. https://github.com/explosion/preshed/issues/17
|
||||
"""
|
||||
cdef int32_t dummy_value = 0
|
||||
self.vocab.strings.add("")
|
||||
self._entries.push_back(
|
||||
_EntryC(
|
||||
entity_hash=self.vocab.strings[""],
|
||||
vector_rows=&dummy_value,
|
||||
feats_row=dummy_value,
|
||||
prob=dummy_value
|
||||
))
|
||||
self._aliases_table.push_back(
|
||||
_AliasC(
|
||||
entry_indices=[dummy_value],
|
||||
probs=[dummy_value]
|
||||
))
|
||||
|
||||
# Avoid struct initializer to enable nogil
|
||||
cdef KBEntryC entry
|
||||
entry.entity_hash = dummy_hash
|
||||
entry.vector_index = dummy_value
|
||||
entry.feats_row = dummy_value
|
||||
entry.prob = dummy_value
|
||||
|
||||
# Avoid struct initializer to enable nogil
|
||||
cdef vector[int64_t] dummy_entry_indices
|
||||
dummy_entry_indices.push_back(0)
|
||||
cdef vector[float] dummy_probs
|
||||
dummy_probs.push_back(0)
|
||||
|
||||
cdef AliasC alias
|
||||
alias.entry_indices = dummy_entry_indices
|
||||
alias.probs = dummy_probs
|
||||
|
||||
self._entries.push_back(entry)
|
||||
self._aliases_table.push_back(alias)
|
||||
|
||||
cpdef load_bulk(self, loc)
|
||||
cpdef set_entities(self, entity_list, prob_list, vector_list)
|
||||
|
||||
|
||||
cdef class Writer:
|
||||
cdef FILE* _fp
|
||||
|
||||
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1
|
||||
cdef int write_vector_element(self, float element) except -1
|
||||
cdef int write_entry(self, hash_t entry_hash, float entry_prob, int32_t vector_index) except -1
|
||||
|
||||
cdef int write_alias_length(self, int64_t alias_length) except -1
|
||||
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1
|
||||
cdef int write_alias(self, int64_t entry_index, float prob) except -1
|
||||
|
||||
cdef int _write(self, void* value, size_t size) except -1
|
||||
|
||||
cdef class Reader:
|
||||
cdef FILE* _fp
|
||||
|
||||
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1
|
||||
cdef int read_vector_element(self, float* element) except -1
|
||||
cdef int read_entry(self, hash_t* entity_hash, float* prob, int32_t* vector_index) except -1
|
||||
|
||||
cdef int read_alias_length(self, int64_t* alias_length) except -1
|
||||
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1
|
||||
cdef int read_alias(self, int64_t* entry_index, float* prob) except -1
|
||||
|
||||
cdef int _read(self, void* value, size_t size) except -1
|
||||
|
||||
|
|
397
spacy/kb.pyx
397
spacy/kb.pyx
|
@ -1,13 +1,30 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
# coding: utf8
|
||||
from spacy.errors import Errors, Warnings, user_warning
|
||||
|
||||
from pathlib import Path
|
||||
from cymem.cymem cimport Pool
|
||||
from preshed.maps cimport PreshMap
|
||||
|
||||
from cpython.exc cimport PyErr_SetFromErrno
|
||||
|
||||
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
|
||||
from .typedefs cimport hash_t
|
||||
|
||||
from os import path
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
|
||||
cdef class Candidate:
|
||||
|
||||
def __init__(self, KnowledgeBase kb, entity_hash, alias_hash, prior_prob):
|
||||
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
|
||||
self.kb = kb
|
||||
self.entity_hash = entity_hash
|
||||
self.entity_freq = entity_freq
|
||||
self.entity_vector = entity_vector
|
||||
self.alias_hash = alias_hash
|
||||
self.prior_prob = prior_prob
|
||||
|
||||
|
@ -19,7 +36,7 @@ cdef class Candidate:
|
|||
@property
|
||||
def entity_(self):
|
||||
"""RETURNS (unicode): ID/name of this entity in the KB"""
|
||||
return self.kb.vocab.strings[self.entity]
|
||||
return self.kb.vocab.strings[self.entity_hash]
|
||||
|
||||
@property
|
||||
def alias(self):
|
||||
|
@ -29,7 +46,15 @@ cdef class Candidate:
|
|||
@property
|
||||
def alias_(self):
|
||||
"""RETURNS (unicode): ID of the original alias"""
|
||||
return self.kb.vocab.strings[self.alias]
|
||||
return self.kb.vocab.strings[self.alias_hash]
|
||||
|
||||
@property
|
||||
def entity_freq(self):
|
||||
return self.entity_freq
|
||||
|
||||
@property
|
||||
def entity_vector(self):
|
||||
return self.entity_vector
|
||||
|
||||
@property
|
||||
def prior_prob(self):
|
||||
|
@ -38,26 +63,41 @@ cdef class Candidate:
|
|||
|
||||
cdef class KnowledgeBase:
|
||||
|
||||
def __init__(self, Vocab vocab):
|
||||
def __init__(self, Vocab vocab, entity_vector_length):
|
||||
self.vocab = vocab
|
||||
self.mem = Pool()
|
||||
self.entity_vector_length = entity_vector_length
|
||||
|
||||
self._entry_index = PreshMap()
|
||||
self._alias_index = PreshMap()
|
||||
self.mem = Pool()
|
||||
self._create_empty_vectors()
|
||||
|
||||
self.vocab.strings.add("")
|
||||
self._create_empty_vectors(dummy_hash=self.vocab.strings[""])
|
||||
|
||||
@property
|
||||
def entity_vector_length(self):
|
||||
"""RETURNS (uint64): length of the entity vectors"""
|
||||
return self.entity_vector_length
|
||||
|
||||
def __len__(self):
|
||||
return self.get_size_entities()
|
||||
|
||||
def get_size_entities(self):
|
||||
return self._entries.size() - 1 # not counting dummy element on index 0
|
||||
return len(self._entry_index)
|
||||
|
||||
def get_entity_strings(self):
|
||||
return [self.vocab.strings[x] for x in self._entry_index]
|
||||
|
||||
def get_size_aliases(self):
|
||||
return self._aliases_table.size() - 1 # not counting dummy element on index 0
|
||||
return len(self._alias_index)
|
||||
|
||||
def add_entity(self, unicode entity, float prob=0.5, vectors=None, features=None):
|
||||
def get_alias_strings(self):
|
||||
return [self.vocab.strings[x] for x in self._alias_index]
|
||||
|
||||
def add_entity(self, unicode entity, float prob, vector[float] entity_vector):
|
||||
"""
|
||||
Add an entity to the KB.
|
||||
Return the hash of the entity ID at the end
|
||||
Add an entity to the KB, optionally specifying its log probability based on corpus frequency
|
||||
Return the hash of the entity ID/name at the end.
|
||||
"""
|
||||
cdef hash_t entity_hash = self.vocab.strings.add(entity)
|
||||
|
||||
|
@ -66,40 +106,72 @@ cdef class KnowledgeBase:
|
|||
user_warning(Warnings.W018.format(entity=entity))
|
||||
return
|
||||
|
||||
cdef int32_t dummy_value = 342
|
||||
self.c_add_entity(entity_hash=entity_hash, prob=prob,
|
||||
vector_rows=&dummy_value, feats_row=dummy_value)
|
||||
# TODO self._vectors_table.get_pointer(vectors),
|
||||
# self._features_table.get(features))
|
||||
# Raise an error if the provided entity vector is not of the correct length
|
||||
if len(entity_vector) != self.entity_vector_length:
|
||||
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
||||
|
||||
vector_index = self.c_add_vector(entity_vector=entity_vector)
|
||||
|
||||
new_index = self.c_add_entity(entity_hash=entity_hash,
|
||||
prob=prob,
|
||||
vector_index=vector_index,
|
||||
feats_row=-1) # Features table currently not implemented
|
||||
self._entry_index[entity_hash] = new_index
|
||||
|
||||
return entity_hash
|
||||
|
||||
cpdef set_entities(self, entity_list, prob_list, vector_list):
|
||||
if len(entity_list) != len(prob_list) or len(entity_list) != len(vector_list):
|
||||
raise ValueError(Errors.E140)
|
||||
|
||||
nr_entities = len(entity_list)
|
||||
self._entry_index = PreshMap(nr_entities+1)
|
||||
self._entries = entry_vec(nr_entities+1)
|
||||
|
||||
i = 0
|
||||
cdef KBEntryC entry
|
||||
while i < nr_entities:
|
||||
entity_vector = vector_list[i]
|
||||
if len(entity_vector) != self.entity_vector_length:
|
||||
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
||||
|
||||
entity_hash = self.vocab.strings.add(entity_list[i])
|
||||
entry.entity_hash = entity_hash
|
||||
entry.prob = prob_list[i]
|
||||
|
||||
vector_index = self.c_add_vector(entity_vector=vector_list[i])
|
||||
entry.vector_index = vector_index
|
||||
|
||||
entry.feats_row = -1 # Features table currently not implemented
|
||||
|
||||
self._entries[i+1] = entry
|
||||
self._entry_index[entity_hash] = i+1
|
||||
|
||||
i += 1
|
||||
|
||||
def add_alias(self, unicode alias, entities, probabilities):
|
||||
"""
|
||||
For a given alias, add its potential entities and prior probabilies to the KB.
|
||||
Return the alias_hash at the end
|
||||
"""
|
||||
|
||||
# Throw an error if the length of entities and probabilities are not the same
|
||||
if not len(entities) == len(probabilities):
|
||||
raise ValueError(Errors.E132.format(alias=alias,
|
||||
entities_length=len(entities),
|
||||
probabilities_length=len(probabilities)))
|
||||
|
||||
# Throw an error if the probabilities sum up to more than 1
|
||||
# Throw an error if the probabilities sum up to more than 1 (allow for some rounding errors)
|
||||
prob_sum = sum(probabilities)
|
||||
if prob_sum > 1:
|
||||
if prob_sum > 1.00001:
|
||||
raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum))
|
||||
|
||||
cdef hash_t alias_hash = self.vocab.strings.add(alias)
|
||||
|
||||
# Return if this alias was added before
|
||||
# Check whether this alias was added before
|
||||
if alias_hash in self._alias_index:
|
||||
user_warning(Warnings.W017.format(alias=alias))
|
||||
return
|
||||
|
||||
cdef hash_t entity_hash
|
||||
|
||||
cdef vector[int64_t] entry_indices
|
||||
cdef vector[float] probs
|
||||
|
||||
|
@ -112,20 +184,295 @@ cdef class KnowledgeBase:
|
|||
entry_indices.push_back(int(entry_index))
|
||||
probs.push_back(float(prob))
|
||||
|
||||
self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs)
|
||||
new_index = self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs)
|
||||
self._alias_index[alias_hash] = new_index
|
||||
|
||||
return alias_hash
|
||||
|
||||
|
||||
def get_candidates(self, unicode alias):
|
||||
""" TODO: where to put this functionality ?"""
|
||||
cdef hash_t alias_hash = self.vocab.strings[alias]
|
||||
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
||||
alias_entry = self._aliases_table[alias_index]
|
||||
|
||||
return [Candidate(kb=self,
|
||||
entity_hash=self._entries[entry_index].entity_hash,
|
||||
entity_freq=self._entries[entry_index].prob,
|
||||
entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
|
||||
alias_hash=alias_hash,
|
||||
prior_prob=prob)
|
||||
for (entry_index, prob) in zip(alias_entry.entry_indices, alias_entry.probs)
|
||||
if entry_index != 0]
|
||||
|
||||
|
||||
def dump(self, loc):
|
||||
cdef Writer writer = Writer(loc)
|
||||
writer.write_header(self.get_size_entities(), self.entity_vector_length)
|
||||
|
||||
# dumping the entity vectors in their original order
|
||||
i = 0
|
||||
for entity_vector in self._vectors_table:
|
||||
for element in entity_vector:
|
||||
writer.write_vector_element(element)
|
||||
i = i+1
|
||||
|
||||
# dumping the entry records in the order in which they are in the _entries vector.
|
||||
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
||||
i = 1
|
||||
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
|
||||
entry = self._entries[entry_index]
|
||||
assert entry.entity_hash == entry_hash
|
||||
assert entry_index == i
|
||||
writer.write_entry(entry.entity_hash, entry.prob, entry.vector_index)
|
||||
i = i+1
|
||||
|
||||
writer.write_alias_length(self.get_size_aliases())
|
||||
|
||||
# dumping the aliases in the order in which they are in the _alias_index vector.
|
||||
# index 0 is a dummy object not stored in the _aliases_table and can be ignored.
|
||||
i = 1
|
||||
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
|
||||
alias = self._aliases_table[alias_index]
|
||||
assert alias_index == i
|
||||
|
||||
candidate_length = len(alias.entry_indices)
|
||||
writer.write_alias_header(alias_hash, candidate_length)
|
||||
|
||||
for j in range(0, candidate_length):
|
||||
writer.write_alias(alias.entry_indices[j], alias.probs[j])
|
||||
|
||||
i = i+1
|
||||
|
||||
writer.close()
|
||||
|
||||
cpdef load_bulk(self, loc):
|
||||
cdef hash_t entity_hash
|
||||
cdef hash_t alias_hash
|
||||
cdef int64_t entry_index
|
||||
cdef float prob
|
||||
cdef int32_t vector_index
|
||||
cdef KBEntryC entry
|
||||
cdef AliasC alias
|
||||
cdef float vector_element
|
||||
|
||||
cdef Reader reader = Reader(loc)
|
||||
|
||||
# STEP 0: load header and initialize KB
|
||||
cdef int64_t nr_entities
|
||||
cdef int64_t entity_vector_length
|
||||
reader.read_header(&nr_entities, &entity_vector_length)
|
||||
|
||||
self.entity_vector_length = entity_vector_length
|
||||
self._entry_index = PreshMap(nr_entities+1)
|
||||
self._entries = entry_vec(nr_entities+1)
|
||||
self._vectors_table = float_matrix(nr_entities+1)
|
||||
|
||||
# STEP 1: load entity vectors
|
||||
cdef int i = 0
|
||||
cdef int j = 0
|
||||
while i < nr_entities:
|
||||
entity_vector = float_vec(entity_vector_length)
|
||||
j = 0
|
||||
while j < entity_vector_length:
|
||||
reader.read_vector_element(&vector_element)
|
||||
entity_vector[j] = vector_element
|
||||
j = j+1
|
||||
self._vectors_table[i] = entity_vector
|
||||
i = i+1
|
||||
|
||||
# STEP 2: load entities
|
||||
# we assume that the entity data was written in sequence
|
||||
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
||||
i = 1
|
||||
while i <= nr_entities:
|
||||
reader.read_entry(&entity_hash, &prob, &vector_index)
|
||||
|
||||
entry.entity_hash = entity_hash
|
||||
entry.prob = prob
|
||||
entry.vector_index = vector_index
|
||||
entry.feats_row = -1 # Features table currently not implemented
|
||||
|
||||
self._entries[i] = entry
|
||||
self._entry_index[entity_hash] = i
|
||||
|
||||
i += 1
|
||||
|
||||
# check that all entities were read in properly
|
||||
assert nr_entities == self.get_size_entities()
|
||||
|
||||
# STEP 3: load aliases
|
||||
|
||||
cdef int64_t nr_aliases
|
||||
reader.read_alias_length(&nr_aliases)
|
||||
self._alias_index = PreshMap(nr_aliases+1)
|
||||
self._aliases_table = alias_vec(nr_aliases+1)
|
||||
|
||||
cdef int64_t nr_candidates
|
||||
cdef vector[int64_t] entry_indices
|
||||
cdef vector[float] probs
|
||||
|
||||
i = 1
|
||||
# we assume the alias data was written in sequence
|
||||
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
||||
while i <= nr_aliases:
|
||||
reader.read_alias_header(&alias_hash, &nr_candidates)
|
||||
entry_indices = vector[int64_t](nr_candidates)
|
||||
probs = vector[float](nr_candidates)
|
||||
|
||||
for j in range(0, nr_candidates):
|
||||
reader.read_alias(&entry_index, &prob)
|
||||
entry_indices[j] = entry_index
|
||||
probs[j] = prob
|
||||
|
||||
alias.entry_indices = entry_indices
|
||||
alias.probs = probs
|
||||
|
||||
self._aliases_table[i] = alias
|
||||
self._alias_index[alias_hash] = i
|
||||
|
||||
i += 1
|
||||
|
||||
# check that all aliases were read in properly
|
||||
assert nr_aliases == self.get_size_aliases()
|
||||
|
||||
|
||||
cdef class Writer:
|
||||
def __init__(self, object loc):
|
||||
if path.exists(loc):
|
||||
assert not path.isdir(loc), "%s is directory." % loc
|
||||
if isinstance(loc, Path):
|
||||
loc = bytes(loc)
|
||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||
self._fp = fopen(<char*>bytes_loc, 'wb')
|
||||
assert self._fp != NULL
|
||||
fseek(self._fp, 0, 0)
|
||||
|
||||
def close(self):
|
||||
cdef size_t status = fclose(self._fp)
|
||||
assert status == 0
|
||||
|
||||
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1:
|
||||
self._write(&nr_entries, sizeof(nr_entries))
|
||||
self._write(&entity_vector_length, sizeof(entity_vector_length))
|
||||
|
||||
cdef int write_vector_element(self, float element) except -1:
|
||||
self._write(&element, sizeof(element))
|
||||
|
||||
cdef int write_entry(self, hash_t entry_hash, float entry_prob, int32_t vector_index) except -1:
|
||||
self._write(&entry_hash, sizeof(entry_hash))
|
||||
self._write(&entry_prob, sizeof(entry_prob))
|
||||
self._write(&vector_index, sizeof(vector_index))
|
||||
# Features table currently not implemented and not written to file
|
||||
|
||||
cdef int write_alias_length(self, int64_t alias_length) except -1:
|
||||
self._write(&alias_length, sizeof(alias_length))
|
||||
|
||||
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1:
|
||||
self._write(&alias_hash, sizeof(alias_hash))
|
||||
self._write(&candidate_length, sizeof(candidate_length))
|
||||
|
||||
cdef int write_alias(self, int64_t entry_index, float prob) except -1:
|
||||
self._write(&entry_index, sizeof(entry_index))
|
||||
self._write(&prob, sizeof(prob))
|
||||
|
||||
cdef int _write(self, void* value, size_t size) except -1:
|
||||
status = fwrite(value, size, 1, self._fp)
|
||||
assert status == 1, status
|
||||
|
||||
|
||||
cdef class Reader:
|
||||
def __init__(self, object loc):
|
||||
assert path.exists(loc)
|
||||
assert not path.isdir(loc)
|
||||
if isinstance(loc, Path):
|
||||
loc = bytes(loc)
|
||||
cdef bytes bytes_loc = loc.encode('utf8') if type(loc) == unicode else loc
|
||||
self._fp = fopen(<char*>bytes_loc, 'rb')
|
||||
if not self._fp:
|
||||
PyErr_SetFromErrno(IOError)
|
||||
status = fseek(self._fp, 0, 0) # this can be 0 if there is no header
|
||||
|
||||
def __dealloc__(self):
|
||||
fclose(self._fp)
|
||||
|
||||
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1:
|
||||
status = self._read(nr_entries, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading header from input file")
|
||||
|
||||
status = self._read(entity_vector_length, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading header from input file")
|
||||
|
||||
cdef int read_vector_element(self, float* element) except -1:
|
||||
status = self._read(element, sizeof(float))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading entity vector from input file")
|
||||
|
||||
cdef int read_entry(self, hash_t* entity_hash, float* prob, int32_t* vector_index) except -1:
|
||||
status = self._read(entity_hash, sizeof(hash_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading entity hash from input file")
|
||||
|
||||
status = self._read(prob, sizeof(float))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading entity prob from input file")
|
||||
|
||||
status = self._read(vector_index, sizeof(int32_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading entity vector from input file")
|
||||
|
||||
if feof(self._fp):
|
||||
return 0
|
||||
else:
|
||||
return 1
|
||||
|
||||
cdef int read_alias_length(self, int64_t* alias_length) except -1:
|
||||
status = self._read(alias_length, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading alias length from input file")
|
||||
|
||||
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1:
|
||||
status = self._read(alias_hash, sizeof(hash_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading alias hash from input file")
|
||||
|
||||
status = self._read(candidate_length, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading candidate length from input file")
|
||||
|
||||
cdef int read_alias(self, int64_t* entry_index, float* prob) except -1:
|
||||
status = self._read(entry_index, sizeof(int64_t))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading entry index for alias from input file")
|
||||
|
||||
status = self._read(prob, sizeof(float))
|
||||
if status < 1:
|
||||
if feof(self._fp):
|
||||
return 0 # end of file
|
||||
raise IOError("error reading prob for entity/alias from input file")
|
||||
|
||||
cdef int _read(self, void* value, size_t size) except -1:
|
||||
status = fread(value, size, 1, self._fp)
|
||||
return status
|
||||
|
||||
|
||||
|
|
|
@ -9,6 +9,8 @@ _bengali = r"\u0980-\u09FF"
|
|||
|
||||
_hebrew = r"\u0591-\u05F4\uFB1D-\uFB4F"
|
||||
|
||||
_hindi = r"\u0900-\u097F"
|
||||
|
||||
# Latin standard
|
||||
_latin_u_standard = r"A-Z"
|
||||
_latin_l_standard = r"a-z"
|
||||
|
@ -193,7 +195,7 @@ _ukrainian = r"а-щюяіїєґА-ЩЮЯІЇЄҐ"
|
|||
_upper = LATIN_UPPER + _russian_upper + _tatar_upper + _greek_upper + _ukrainian_upper
|
||||
_lower = LATIN_LOWER + _russian_lower + _tatar_lower + _greek_lower + _ukrainian_lower
|
||||
|
||||
_uncased = _bengali + _hebrew + _persian + _sinhala
|
||||
_uncased = _bengali + _hebrew + _persian + _sinhala + _hindi
|
||||
|
||||
ALPHA = group_chars(LATIN + _russian + _tatar + _greek + _ukrainian + _uncased)
|
||||
ALPHA_LOWER = group_chars(_lower + _uncased)
|
||||
|
|
|
@ -5,7 +5,7 @@ from __future__ import unicode_literals
|
|||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.en.examples import sentences
|
||||
>>> from spacy.lang.id.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
|
120
spacy/lang/ko/__init__.py
Normal file
120
spacy/lang/ko/__init__.py
Normal file
|
@ -0,0 +1,120 @@
|
|||
# encoding: utf8
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .tag_map import TAG_MAP
|
||||
from ...attrs import LANG
|
||||
from ...language import Language
|
||||
from ...tokens import Doc
|
||||
from ...compat import copy_reg
|
||||
from ...util import DummyTokenizer
|
||||
from ...compat import is_python3, is_python_pre_3_5
|
||||
|
||||
is_python_post_3_7 = is_python3 and sys.version_info[1] >= 7
|
||||
|
||||
# fmt: off
|
||||
if is_python_pre_3_5:
|
||||
from collections import namedtuple
|
||||
Morpheme = namedtuple("Morpheme", "surface lemma tag")
|
||||
elif is_python_post_3_7:
|
||||
from dataclasses import dataclass
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Morpheme:
|
||||
surface: str
|
||||
lemma: str
|
||||
tag: str
|
||||
else:
|
||||
from typing import NamedTuple
|
||||
|
||||
class Morpheme(NamedTuple):
|
||||
surface: str
|
||||
lemma: str
|
||||
tag: str
|
||||
|
||||
|
||||
def try_mecab_import():
|
||||
try:
|
||||
from natto import MeCab
|
||||
return MeCab
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Korean support requires [mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
|
||||
"[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
|
||||
"and [natto-py](https://github.com/buruzaemon/natto-py)"
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
|
||||
def check_spaces(text, tokens):
|
||||
token_pattern = re.compile(r"\s?".join(f"({t})" for t in tokens))
|
||||
m = token_pattern.match(text)
|
||||
if m is not None:
|
||||
for i in range(1, m.lastindex):
|
||||
yield m.end(i) < m.start(i + 1)
|
||||
yield False
|
||||
|
||||
|
||||
class KoreanTokenizer(DummyTokenizer):
|
||||
def __init__(self, cls, nlp=None):
|
||||
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
||||
self.Tokenizer = try_mecab_import()
|
||||
|
||||
def __call__(self, text):
|
||||
dtokens = list(self.detailed_tokens(text))
|
||||
surfaces = [dt.surface for dt in dtokens]
|
||||
doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
|
||||
for token, dtoken in zip(doc, dtokens):
|
||||
first_tag, sep, eomi_tags = dtoken.tag.partition("+")
|
||||
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
||||
token.lemma_ = dtoken.lemma
|
||||
doc.user_data["full_tags"] = [dt.tag for dt in dtokens]
|
||||
return doc
|
||||
|
||||
def detailed_tokens(self, text):
|
||||
# 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3],
|
||||
# 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], *
|
||||
with self.Tokenizer("-F%f[0],%f[7]") as tokenizer:
|
||||
for node in tokenizer.parse(text, as_nodes=True):
|
||||
if node.is_eos():
|
||||
break
|
||||
surface = node.surface
|
||||
feature = node.feature
|
||||
tag, _, expr = feature.partition(",")
|
||||
lemma, _, remainder = expr.partition("/")
|
||||
if lemma == "*":
|
||||
lemma = surface
|
||||
yield Morpheme(surface, lemma, tag)
|
||||
|
||||
|
||||
class KoreanDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda _text: "ko"
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||
|
||||
@classmethod
|
||||
def create_tokenizer(cls, nlp=None):
|
||||
return KoreanTokenizer(cls, nlp)
|
||||
|
||||
|
||||
class Korean(Language):
|
||||
lang = "ko"
|
||||
Defaults = KoreanDefaults
|
||||
|
||||
def make_doc(self, text):
|
||||
return self.tokenizer(text)
|
||||
|
||||
|
||||
def pickle_korean(instance):
|
||||
return Korean, tuple()
|
||||
|
||||
|
||||
copy_reg.pickle(Korean, pickle_korean)
|
||||
|
||||
__all__ = ["Korean"]
|
15
spacy/lang/ko/examples.py
Normal file
15
spacy/lang/ko/examples.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.ko.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
sentences = [
|
||||
"애플이 영국의 신생 기업을 10억 달러에 구매를 고려중이다.",
|
||||
"자동 운전 자동차의 손해 배상 책임에 자동차 메이커에 일정한 부담을 요구하겠다.",
|
||||
"자동 배달 로봇이 보도를 주행하는 것을 샌프란시스코시가 금지를 검토중이라고 합니다.",
|
||||
"런던은 영국의 수도이자 가장 큰 도시입니다."
|
||||
]
|
68
spacy/lang/ko/stop_words.py
Normal file
68
spacy/lang/ko/stop_words.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
STOP_WORDS = set("""
|
||||
이
|
||||
있
|
||||
하
|
||||
것
|
||||
들
|
||||
그
|
||||
되
|
||||
수
|
||||
이
|
||||
보
|
||||
않
|
||||
없
|
||||
나
|
||||
주
|
||||
아니
|
||||
등
|
||||
같
|
||||
때
|
||||
년
|
||||
가
|
||||
한
|
||||
지
|
||||
오
|
||||
말
|
||||
일
|
||||
그렇
|
||||
위하
|
||||
때문
|
||||
그것
|
||||
두
|
||||
말하
|
||||
알
|
||||
그러나
|
||||
받
|
||||
못하
|
||||
일
|
||||
그런
|
||||
또
|
||||
더
|
||||
많
|
||||
그리고
|
||||
좋
|
||||
크
|
||||
시키
|
||||
그러
|
||||
하나
|
||||
살
|
||||
데
|
||||
안
|
||||
어떤
|
||||
번
|
||||
나
|
||||
다른
|
||||
어떻
|
||||
들
|
||||
이렇
|
||||
점
|
||||
싶
|
||||
말
|
||||
좀
|
||||
원
|
||||
잘
|
||||
놓
|
||||
""".split())
|
59
spacy/lang/ko/tag_map.py
Normal file
59
spacy/lang/ko/tag_map.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
# encoding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import POS, PUNCT, INTJ, X, SYM, ADJ, AUX, ADP, CONJ, NOUN, PRON
|
||||
from ...symbols import VERB, ADV, PROPN, NUM, DET
|
||||
|
||||
# 은전한닢(mecab-ko-dic)의 품사 태그를 universal pos tag로 대응시킴
|
||||
# https://docs.google.com/spreadsheets/d/1-9blXKjtjeKZqsf4NzHeYJCrr49-nXeRF6D80udfcwY/edit#gid=589544265
|
||||
# https://universaldependencies.org/u/pos/
|
||||
TAG_MAP = {
|
||||
# J.{1,2} 조사
|
||||
"JKS": {POS: ADP},
|
||||
"JKC": {POS: ADP},
|
||||
"JKG": {POS: ADP},
|
||||
"JKO": {POS: ADP},
|
||||
"JKB": {POS: ADP},
|
||||
"JKV": {POS: ADP},
|
||||
"JKQ": {POS: ADP},
|
||||
"JX": {POS: ADP}, # 보조사
|
||||
"JC": {POS: CONJ}, # 접속 조사
|
||||
"MAJ": {POS: CONJ}, # 접속 부사
|
||||
"MAG": {POS: ADV}, # 일반 부사
|
||||
"MM": {POS: DET}, # 관형사
|
||||
"XPN": {POS: X}, # 접두사
|
||||
# XS. 접미사
|
||||
"XSN": {POS: X},
|
||||
"XSV": {POS: X},
|
||||
"XSA": {POS: X},
|
||||
"XR": {POS: X}, # 어근
|
||||
# E.{1,2} 어미
|
||||
"EP": {POS: X},
|
||||
"EF": {POS: X},
|
||||
"EC": {POS: X},
|
||||
"ETN": {POS: X},
|
||||
"ETM": {POS: X},
|
||||
"IC": {POS: INTJ}, # 감탄사
|
||||
"VV": {POS: VERB}, # 동사
|
||||
"VA": {POS: ADJ}, # 형용사
|
||||
"VX": {POS: AUX}, # 보조 용언
|
||||
"VCP": {POS: ADP}, # 긍정 지정사(이다)
|
||||
"VCN": {POS: ADJ}, # 부정 지정사(아니다)
|
||||
"NNG": {POS: NOUN}, # 일반 명사(general noun)
|
||||
"NNB": {POS: NOUN}, # 의존 명사
|
||||
"NNBC": {POS: NOUN}, # 의존 명사(단위: unit)
|
||||
"NNP": {POS: PROPN}, # 고유 명사(proper noun)
|
||||
"NP": {POS: PRON}, # 대명사
|
||||
"NR": {POS: NUM}, # 수사(numerals)
|
||||
"SN": {POS: NUM}, # 숫자
|
||||
# S.{1,2} 부호
|
||||
# 문장 부호
|
||||
"SF": {POS: PUNCT}, # period or other EOS marker
|
||||
"SE": {POS: PUNCT},
|
||||
"SC": {POS: PUNCT}, # comma, etc.
|
||||
"SSO": {POS: PUNCT}, # open bracket
|
||||
"SSC": {POS: PUNCT}, # close bracket
|
||||
"SY": {POS: SYM}, # 기타 기호
|
||||
"SL": {POS: X}, # 외국어
|
||||
"SH": {POS: X}, # 한자
|
||||
}
|
|
@ -1,15 +1,37 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .tag_map import TAG_MAP
|
||||
from .lemmatizer import LOOKUP
|
||||
from .morph_rules import MORPH_RULES
|
||||
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ..norm_exceptions import BASE_NORMS
|
||||
from ...language import Language
|
||||
from ...attrs import LANG
|
||||
from ...attrs import LANG, NORM
|
||||
from ...util import update_exc, add_lookups
|
||||
|
||||
|
||||
def _return_lt(_):
|
||||
return "lt"
|
||||
|
||||
|
||||
class LithuanianDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda text: "lt"
|
||||
lex_attr_getters[LANG] = _return_lt
|
||||
lex_attr_getters[NORM] = add_lookups(
|
||||
Language.Defaults.lex_attr_getters[NORM], BASE_NORMS
|
||||
)
|
||||
lex_attr_getters.update(LEX_ATTRS)
|
||||
|
||||
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
morph_rules = MORPH_RULES
|
||||
lemma_lookup = LOOKUP
|
||||
|
||||
|
||||
class Lithuanian(Language):
|
||||
|
|
22
spacy/lang/lt/examples.py
Normal file
22
spacy/lang/lt/examples.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.lt.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
sentences = [
|
||||
"Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą",
|
||||
"Bepiločiai automobiliai išnaikins vairavimo mokyklas, autoservisus ir eismo nelaimes",
|
||||
"Vilniuje galvojama uždrausti naudoti skėčius",
|
||||
"Londonas yra didelis miestas Jungtinėje Karalystėje",
|
||||
"Kur tu?",
|
||||
"Kas yra Prancūzijos prezidentas?",
|
||||
"Kokia yra Jungtinių Amerikos Valstijų sostinė?",
|
||||
"Kada gimė Dalia Grybauskaitė?",
|
||||
]
|
234227
spacy/lang/lt/lemmatizer.py
Normal file
234227
spacy/lang/lt/lemmatizer.py
Normal file
File diff suppressed because it is too large
Load Diff
1153
spacy/lang/lt/lex_attrs.py
Normal file
1153
spacy/lang/lt/lex_attrs.py
Normal file
File diff suppressed because it is too large
Load Diff
3075
spacy/lang/lt/morph_rules.py
Normal file
3075
spacy/lang/lt/morph_rules.py
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
4798
spacy/lang/lt/tag_map.py
Normal file
4798
spacy/lang/lt/tag_map.py
Normal file
File diff suppressed because it is too large
Load Diff
268
spacy/lang/lt/tokenizer_exceptions.py
Normal file
268
spacy/lang/lt/tokenizer_exceptions.py
Normal file
|
@ -0,0 +1,268 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import ORTH
|
||||
|
||||
_exc = {}
|
||||
|
||||
for orth in [
|
||||
"G.",
|
||||
"J. E.",
|
||||
"J. Em.",
|
||||
"J.E.",
|
||||
"J.Em.",
|
||||
"K.",
|
||||
"N.",
|
||||
"V.",
|
||||
"Vt.",
|
||||
"a.",
|
||||
"a.k.",
|
||||
"a.s.",
|
||||
"adv.",
|
||||
"akad.",
|
||||
"aklg.",
|
||||
"akt.",
|
||||
"al.",
|
||||
"ang.",
|
||||
"angl.",
|
||||
"aps.",
|
||||
"apskr.",
|
||||
"apyg.",
|
||||
"arbat.",
|
||||
"asist.",
|
||||
"asm.",
|
||||
"asm.k.",
|
||||
"asmv.",
|
||||
"atk.",
|
||||
"atsak.",
|
||||
"atsisk.",
|
||||
"atsisk.sąsk.",
|
||||
"atv.",
|
||||
"aut.",
|
||||
"avd.",
|
||||
"b.k.",
|
||||
"baud.",
|
||||
"biol.",
|
||||
"bkl.",
|
||||
"bot.",
|
||||
"bt.",
|
||||
"buv.",
|
||||
"ch.",
|
||||
"chem.",
|
||||
"corp.",
|
||||
"d.",
|
||||
"dab.",
|
||||
"dail.",
|
||||
"dek.",
|
||||
"deš.",
|
||||
"dir.",
|
||||
"dirig.",
|
||||
"doc.",
|
||||
"dol.",
|
||||
"dr.",
|
||||
"drp.",
|
||||
"dvit.",
|
||||
"dėst.",
|
||||
"dš.",
|
||||
"dž.",
|
||||
"e.b.",
|
||||
"e.bankas",
|
||||
"e.p.",
|
||||
"e.parašas",
|
||||
"e.paštas",
|
||||
"e.v.",
|
||||
"e.valdžia",
|
||||
"egz.",
|
||||
"eil.",
|
||||
"ekon.",
|
||||
"el.",
|
||||
"el.bankas",
|
||||
"el.p.",
|
||||
"el.parašas",
|
||||
"el.paštas",
|
||||
"el.valdžia",
|
||||
"etc.",
|
||||
"ež.",
|
||||
"fak.",
|
||||
"faks.",
|
||||
"feat.",
|
||||
"filol.",
|
||||
"filos.",
|
||||
"g.",
|
||||
"gen.",
|
||||
"geol.",
|
||||
"gerb.",
|
||||
"gim.",
|
||||
"gr.",
|
||||
"gv.",
|
||||
"gyd.",
|
||||
"gyv.",
|
||||
"habil.",
|
||||
"inc.",
|
||||
"insp.",
|
||||
"inž.",
|
||||
"ir pan.",
|
||||
"ir t. t.",
|
||||
"isp.",
|
||||
"istor.",
|
||||
"it.",
|
||||
"just.",
|
||||
"k.",
|
||||
"k. a.",
|
||||
"k.a.",
|
||||
"kab.",
|
||||
"kand.",
|
||||
"kart.",
|
||||
"kat.",
|
||||
"ketv.",
|
||||
"kh.",
|
||||
"kl.",
|
||||
"kln.",
|
||||
"km.",
|
||||
"kn.",
|
||||
"koresp.",
|
||||
"kpt.",
|
||||
"kr.",
|
||||
"kt.",
|
||||
"kub.",
|
||||
"kun.",
|
||||
"kv.",
|
||||
"kyš.",
|
||||
"l. e. p.",
|
||||
"l.e.p.",
|
||||
"lenk.",
|
||||
"liet.",
|
||||
"lot.",
|
||||
"lt.",
|
||||
"ltd.",
|
||||
"ltn.",
|
||||
"m.",
|
||||
"m.e..",
|
||||
"m.m.",
|
||||
"mat.",
|
||||
"med.",
|
||||
"mgnt.",
|
||||
"mgr.",
|
||||
"min.",
|
||||
"mjr.",
|
||||
"ml.",
|
||||
"mln.",
|
||||
"mlrd.",
|
||||
"mob.",
|
||||
"mok.",
|
||||
"moksl.",
|
||||
"mokyt.",
|
||||
"mot.",
|
||||
"mr.",
|
||||
"mst.",
|
||||
"mstl.",
|
||||
"mėn.",
|
||||
"nkt.",
|
||||
"no.",
|
||||
"nr.",
|
||||
"ntk.",
|
||||
"nuotr.",
|
||||
"op.",
|
||||
"org.",
|
||||
"orig.",
|
||||
"p.",
|
||||
"p.d.",
|
||||
"p.m.e.",
|
||||
"p.s.",
|
||||
"pab.",
|
||||
"pan.",
|
||||
"past.",
|
||||
"pav.",
|
||||
"pavad.",
|
||||
"per.",
|
||||
"perd.",
|
||||
"pirm.",
|
||||
"pl.",
|
||||
"plg.",
|
||||
"plk.",
|
||||
"pr.",
|
||||
"pr.Kr.",
|
||||
"pranc.",
|
||||
"proc.",
|
||||
"prof.",
|
||||
"prom.",
|
||||
"prot.",
|
||||
"psl.",
|
||||
"pss.",
|
||||
"pvz.",
|
||||
"pšt.",
|
||||
"r.",
|
||||
"raj.",
|
||||
"red.",
|
||||
"rez.",
|
||||
"rež.",
|
||||
"rus.",
|
||||
"rš.",
|
||||
"s.",
|
||||
"sav.",
|
||||
"saviv.",
|
||||
"sek.",
|
||||
"sekr.",
|
||||
"sen.",
|
||||
"sh.",
|
||||
"sk.",
|
||||
"skg.",
|
||||
"skv.",
|
||||
"skyr.",
|
||||
"sp.",
|
||||
"spec.",
|
||||
"sr.",
|
||||
"st.",
|
||||
"str.",
|
||||
"stud.",
|
||||
"sąs.",
|
||||
"t.",
|
||||
"t. p.",
|
||||
"t. y.",
|
||||
"t.p.",
|
||||
"t.t.",
|
||||
"t.y.",
|
||||
"techn.",
|
||||
"tel.",
|
||||
"teol.",
|
||||
"th.",
|
||||
"tir.",
|
||||
"trit.",
|
||||
"trln.",
|
||||
"tšk.",
|
||||
"tūks.",
|
||||
"tūkst.",
|
||||
"up.",
|
||||
"upl.",
|
||||
"v.s.",
|
||||
"vad.",
|
||||
"val.",
|
||||
"valg.",
|
||||
"ved.",
|
||||
"vert.",
|
||||
"vet.",
|
||||
"vid.",
|
||||
"virš.",
|
||||
"vlsč.",
|
||||
"vnt.",
|
||||
"vok.",
|
||||
"vs.",
|
||||
"vtv.",
|
||||
"vv.",
|
||||
"vyr.",
|
||||
"vyresn.",
|
||||
"zool.",
|
||||
"Įn",
|
||||
"įl.",
|
||||
"š.m.",
|
||||
"šnek.",
|
||||
"šv.",
|
||||
"švč.",
|
||||
"ž.ū.",
|
||||
"žin.",
|
||||
"žml.",
|
||||
"žr.",
|
||||
]:
|
||||
_exc[orth] = [{ORTH: orth}]
|
||||
|
||||
TOKENIZER_EXCEPTIONS = _exc
|
|
@ -22,6 +22,7 @@ NOUN_RULES = [
|
|||
VERB_RULES = [
|
||||
["er", "e"], # vasker -> vaske
|
||||
["et", "e"], # vasket -> vaske
|
||||
["a", "e"], # vaska -> vaske
|
||||
["es", "e"], # vaskes -> vaske
|
||||
["te", "e"], # stekte -> steke
|
||||
["år", "å"], # får -> få
|
||||
|
|
|
@ -10,7 +10,15 @@ _exc = {}
|
|||
for exc_data in [
|
||||
{ORTH: "jan.", LEMMA: "januar"},
|
||||
{ORTH: "feb.", LEMMA: "februar"},
|
||||
{ORTH: "mar.", LEMMA: "mars"},
|
||||
{ORTH: "apr.", LEMMA: "april"},
|
||||
{ORTH: "jun.", LEMMA: "juni"},
|
||||
{ORTH: "jul.", LEMMA: "juli"},
|
||||
{ORTH: "aug.", LEMMA: "august"},
|
||||
{ORTH: "sep.", LEMMA: "september"},
|
||||
{ORTH: "okt.", LEMMA: "oktober"},
|
||||
{ORTH: "nov.", LEMMA: "november"},
|
||||
{ORTH: "des.", LEMMA: "desember"},
|
||||
]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
|
@ -18,11 +26,13 @@ for exc_data in [
|
|||
for orth in [
|
||||
"adm.dir.",
|
||||
"a.m.",
|
||||
"andelsnr",
|
||||
"Aq.",
|
||||
"b.c.",
|
||||
"bl.a.",
|
||||
"bla.",
|
||||
"bm.",
|
||||
"bnr.",
|
||||
"bto.",
|
||||
"ca.",
|
||||
"cand.mag.",
|
||||
|
@ -41,6 +51,7 @@ for orth in [
|
|||
"el.",
|
||||
"e.l.",
|
||||
"et.",
|
||||
"etc.",
|
||||
"etg.",
|
||||
"ev.",
|
||||
"evt.",
|
||||
|
@ -76,6 +87,7 @@ for orth in [
|
|||
"kgl.res.",
|
||||
"kl.",
|
||||
"komm.",
|
||||
"kr.",
|
||||
"kst.",
|
||||
"lø.",
|
||||
"ma.",
|
||||
|
@ -106,6 +118,7 @@ for orth in [
|
|||
"o.l.",
|
||||
"on.",
|
||||
"op.",
|
||||
"org."
|
||||
"osv.",
|
||||
"ovf.",
|
||||
"p.",
|
||||
|
@ -130,6 +143,7 @@ for orth in [
|
|||
"sep.",
|
||||
"siviling.",
|
||||
"sms.",
|
||||
"snr.",
|
||||
"spm.",
|
||||
"sr.",
|
||||
"sst.",
|
||||
|
|
18
spacy/lang/sq/examples.py
Normal file
18
spacy/lang/sq/examples.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.sq.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
sentences = [
|
||||
"Apple po shqyrton blerjen e nje shoqërie të U.K. për 1 miliard dollarë",
|
||||
"Makinat autonome ndryshojnë përgjegjësinë e sigurimit ndaj prodhuesve",
|
||||
"San Francisko konsideron ndalimin e robotëve të shpërndarjes",
|
||||
"Londra është një qytet i madh në Mbretërinë e Bashkuar.",
|
||||
]
|
|
@ -262,13 +262,13 @@ cdef find_matches(TokenPatternC** patterns, int n, Doc doc, extensions=None,
|
|||
|
||||
|
||||
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
|
||||
# There have been a few bugs here.
|
||||
# The code was originally designed to always have pattern[1].attrs.value
|
||||
# be the ent_id when we get to the end of a pattern. However, Issue #2671
|
||||
# showed this wasn't the case when we had a reject-and-continue before a
|
||||
# match. I still don't really understand what's going on here, but this
|
||||
# workaround does resolve the issue.
|
||||
while pattern.attrs.attr != ID and \
|
||||
(pattern.nr_attr > 0 or pattern.nr_extra_attr > 0 or pattern.nr_py > 0):
|
||||
# match.
|
||||
# The patch to #2671 was wrong though, which came up in #3839.
|
||||
while pattern.attrs.attr != ID:
|
||||
pattern += 1
|
||||
return pattern.attrs.value
|
||||
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from collections import defaultdict
|
||||
from collections import defaultdict, OrderedDict
|
||||
import srsly
|
||||
|
||||
from ..errors import Errors
|
||||
from ..compat import basestring_
|
||||
from ..util import ensure_path
|
||||
from ..util import ensure_path, to_disk, from_disk
|
||||
from ..tokens import Span
|
||||
from ..matcher import Matcher, PhraseMatcher
|
||||
|
||||
DEFAULT_ENT_ID_SEP = "||"
|
||||
|
||||
|
||||
class EntityRuler(object):
|
||||
"""The EntityRuler lets you add spans to the `Doc.ents` using token-based
|
||||
|
@ -24,7 +26,7 @@ class EntityRuler(object):
|
|||
|
||||
name = "entity_ruler"
|
||||
|
||||
def __init__(self, nlp, **cfg):
|
||||
def __init__(self, nlp, phrase_matcher_attr=None, **cfg):
|
||||
"""Initialize the entitiy ruler. If patterns are supplied here, they
|
||||
need to be a list of dictionaries with a `"label"` and `"pattern"`
|
||||
key. A pattern can either be a token pattern (list) or a phrase pattern
|
||||
|
@ -32,6 +34,8 @@ class EntityRuler(object):
|
|||
|
||||
nlp (Language): The shared nlp object to pass the vocab to the matchers
|
||||
and process phrase patterns.
|
||||
phrase_matcher_attr (int / unicode): Token attribute to match on, passed
|
||||
to the internal PhraseMatcher as `attr`
|
||||
patterns (iterable): Optional patterns to load in.
|
||||
overwrite_ents (bool): If existing entities are present, e.g. entities
|
||||
added by the model, overwrite them by matches if necessary.
|
||||
|
@ -47,8 +51,15 @@ class EntityRuler(object):
|
|||
self.token_patterns = defaultdict(list)
|
||||
self.phrase_patterns = defaultdict(list)
|
||||
self.matcher = Matcher(nlp.vocab)
|
||||
self.phrase_matcher = PhraseMatcher(nlp.vocab)
|
||||
self.ent_id_sep = cfg.get("ent_id_sep", "||")
|
||||
if phrase_matcher_attr is not None:
|
||||
self.phrase_matcher_attr = phrase_matcher_attr
|
||||
self.phrase_matcher = PhraseMatcher(
|
||||
nlp.vocab, attr=self.phrase_matcher_attr
|
||||
)
|
||||
else:
|
||||
self.phrase_matcher_attr = None
|
||||
self.phrase_matcher = PhraseMatcher(nlp.vocab)
|
||||
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
|
||||
patterns = cfg.get("patterns")
|
||||
if patterns is not None:
|
||||
self.add_patterns(patterns)
|
||||
|
@ -196,7 +207,7 @@ class EntityRuler(object):
|
|||
|
||||
def _create_label(self, label, ent_id):
|
||||
"""Join Entity label with ent_id if the pattern has an `id` attribute
|
||||
|
||||
|
||||
RETURNS (str): The ent_label joined with configured `ent_id_sep`
|
||||
"""
|
||||
if isinstance(ent_id, basestring_):
|
||||
|
@ -212,8 +223,18 @@ class EntityRuler(object):
|
|||
|
||||
DOCS: https://spacy.io/api/entityruler#from_bytes
|
||||
"""
|
||||
patterns = srsly.msgpack_loads(patterns_bytes)
|
||||
self.add_patterns(patterns)
|
||||
cfg = srsly.msgpack_loads(patterns_bytes)
|
||||
if isinstance(cfg, dict):
|
||||
self.add_patterns(cfg.get("patterns", cfg))
|
||||
self.overwrite = cfg.get("overwrite", False)
|
||||
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr", None)
|
||||
if self.phrase_matcher_attr is not None:
|
||||
self.phrase_matcher = PhraseMatcher(
|
||||
self.nlp.vocab, attr=self.phrase_matcher_attr
|
||||
)
|
||||
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
|
||||
else:
|
||||
self.add_patterns(cfg)
|
||||
return self
|
||||
|
||||
def to_bytes(self, **kwargs):
|
||||
|
@ -223,7 +244,16 @@ class EntityRuler(object):
|
|||
|
||||
DOCS: https://spacy.io/api/entityruler#to_bytes
|
||||
"""
|
||||
return srsly.msgpack_dumps(self.patterns)
|
||||
|
||||
serial = OrderedDict(
|
||||
(
|
||||
("overwrite", self.overwrite),
|
||||
("ent_id_sep", self.ent_id_sep),
|
||||
("phrase_matcher_attr", self.phrase_matcher_attr),
|
||||
("patterns", self.patterns),
|
||||
)
|
||||
)
|
||||
return srsly.msgpack_dumps(serial)
|
||||
|
||||
def from_disk(self, path, **kwargs):
|
||||
"""Load the entity ruler from a file. Expects a file containing
|
||||
|
@ -236,21 +266,52 @@ class EntityRuler(object):
|
|||
DOCS: https://spacy.io/api/entityruler#from_disk
|
||||
"""
|
||||
path = ensure_path(path)
|
||||
path = path.with_suffix(".jsonl")
|
||||
patterns = srsly.read_jsonl(path)
|
||||
self.add_patterns(patterns)
|
||||
depr_patterns_path = path.with_suffix(".jsonl")
|
||||
if depr_patterns_path.is_file():
|
||||
patterns = srsly.read_jsonl(depr_patterns_path)
|
||||
self.add_patterns(patterns)
|
||||
else:
|
||||
cfg = {}
|
||||
deserializers = {
|
||||
"patterns": lambda p: self.add_patterns(
|
||||
srsly.read_jsonl(p.with_suffix(".jsonl"))
|
||||
),
|
||||
"cfg": lambda p: cfg.update(srsly.read_json(p)),
|
||||
}
|
||||
from_disk(path, deserializers, {})
|
||||
self.overwrite = cfg.get("overwrite", False)
|
||||
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr")
|
||||
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
|
||||
|
||||
if self.phrase_matcher_attr is not None:
|
||||
self.phrase_matcher = PhraseMatcher(
|
||||
self.nlp.vocab, attr=self.phrase_matcher_attr
|
||||
)
|
||||
return self
|
||||
|
||||
def to_disk(self, path, **kwargs):
|
||||
"""Save the entity ruler patterns to a directory. The patterns will be
|
||||
saved as newline-delimited JSON (JSONL).
|
||||
|
||||
path (unicode / Path): The JSONL file to load.
|
||||
path (unicode / Path): The JSONL file to save.
|
||||
**kwargs: Other config paramters, mostly for consistency.
|
||||
RETURNS (EntityRuler): The loaded entity ruler.
|
||||
|
||||
DOCS: https://spacy.io/api/entityruler#to_disk
|
||||
"""
|
||||
path = ensure_path(path)
|
||||
path = path.with_suffix(".jsonl")
|
||||
srsly.write_jsonl(path, self.patterns)
|
||||
cfg = {
|
||||
"overwrite": self.overwrite,
|
||||
"phrase_matcher_attr": self.phrase_matcher_attr,
|
||||
"ent_id_sep": self.ent_id_sep,
|
||||
}
|
||||
serializers = {
|
||||
"patterns": lambda p: srsly.write_jsonl(
|
||||
p.with_suffix(".jsonl"), self.patterns
|
||||
),
|
||||
"cfg": lambda p: srsly.write_json(p, cfg),
|
||||
}
|
||||
if path.suffix == ".jsonl": # user wants to save only JSONL
|
||||
srsly.write_jsonl(path, self.patterns)
|
||||
else:
|
||||
to_disk(path, serializers, {})
|
||||
|
|
|
@ -3,16 +3,18 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
cimport numpy as np
|
||||
|
||||
import numpy
|
||||
import srsly
|
||||
import random
|
||||
from collections import OrderedDict
|
||||
from thinc.api import chain
|
||||
from thinc.v2v import Affine, Maxout, Softmax
|
||||
from thinc.misc import LayerNorm
|
||||
from thinc.neural.util import to_categorical, copy_array
|
||||
from thinc.neural.util import to_categorical
|
||||
from thinc.neural.util import get_array_module
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
from ..cli.pretrain import get_cossim_loss
|
||||
from .functions import merge_subtokens
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..syntax.nn_parser cimport Parser
|
||||
|
@ -24,9 +26,9 @@ from ..vocab cimport Vocab
|
|||
from ..syntax import nonproj
|
||||
from ..attrs import POS, ID
|
||||
from ..parts_of_speech import X
|
||||
from .._ml import Tok2Vec, build_tagger_model
|
||||
from .._ml import Tok2Vec, build_tagger_model, cosine
|
||||
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from .._ml import build_bow_text_classifier
|
||||
from .._ml import build_bow_text_classifier, build_nel_encoder
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
from .._ml import masked_language_model, create_default_optimizer
|
||||
from ..errors import Errors, TempErrors
|
||||
|
@ -229,7 +231,7 @@ class Tensorizer(Pipe):
|
|||
|
||||
vocab (Vocab): A `Vocab` instance. The model must share the same
|
||||
`Vocab` instance with the `Doc` objects it will process.
|
||||
model (Model): A `Model` instance or `True` allocate one later.
|
||||
model (Model): A `Model` instance or `True` to allocate one later.
|
||||
**cfg: Config parameters.
|
||||
|
||||
EXAMPLE:
|
||||
|
@ -294,7 +296,7 @@ class Tensorizer(Pipe):
|
|||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
golds (iterable): A batch of `GoldParse` objects.
|
||||
drop (float): The droput rate.
|
||||
drop (float): The dropout rate.
|
||||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
"""
|
||||
|
@ -386,7 +388,7 @@ class Tagger(Pipe):
|
|||
def predict(self, docs):
|
||||
self.require_model()
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle case where there are no tokens in any docs.
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
n_labels = len(self.labels)
|
||||
guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
|
||||
tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
|
||||
|
@ -900,6 +902,11 @@ class TextCategorizer(Pipe):
|
|||
def labels(self):
|
||||
return tuple(self.cfg.setdefault("labels", []))
|
||||
|
||||
def require_labels(self):
|
||||
"""Raise an error if the component's model has no labels defined."""
|
||||
if not self.labels:
|
||||
raise ValueError(Errors.E143.format(name=self.name))
|
||||
|
||||
@labels.setter
|
||||
def labels(self, value):
|
||||
self.cfg["labels"] = tuple(value)
|
||||
|
@ -929,6 +936,7 @@ class TextCategorizer(Pipe):
|
|||
doc.cats[label] = float(scores[i, j])
|
||||
|
||||
def update(self, docs, golds, state=None, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
||||
loss, d_scores = self.get_loss(docs, golds, scores)
|
||||
bp_scores(d_scores, sgd=sgd)
|
||||
|
@ -983,6 +991,7 @@ class TextCategorizer(Pipe):
|
|||
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
||||
if self.model is True:
|
||||
self.cfg["pretrained_vectors"] = kwargs.get("pretrained_vectors")
|
||||
self.require_labels()
|
||||
self.model = self.Model(len(self.labels), **self.cfg)
|
||||
link_vectors_to_models(self.vocab)
|
||||
if sgd is None:
|
||||
|
@ -1001,7 +1010,7 @@ cdef class DependencyParser(Parser):
|
|||
|
||||
@property
|
||||
def postprocesses(self):
|
||||
return [nonproj.deprojectivize, merge_subtokens]
|
||||
return [nonproj.deprojectivize]
|
||||
|
||||
def add_multitask_objective(self, target):
|
||||
if target == "cloze":
|
||||
|
@ -1063,52 +1072,252 @@ cdef class EntityRecognizer(Parser):
|
|||
|
||||
|
||||
class EntityLinker(Pipe):
|
||||
"""Pipeline component for named entity linking.
|
||||
|
||||
DOCS: TODO
|
||||
"""
|
||||
name = 'entity_linker'
|
||||
|
||||
@classmethod
|
||||
def Model(cls, nr_class=1, **cfg):
|
||||
# TODO: non-dummy EL implementation
|
||||
return None
|
||||
def Model(cls, **cfg):
|
||||
embed_width = cfg.get("embed_width", 300)
|
||||
hidden_width = cfg.get("hidden_width", 128)
|
||||
type_to_int = cfg.get("type_to_int", dict())
|
||||
|
||||
def __init__(self, model=True, **cfg):
|
||||
self.model = False
|
||||
model = build_nel_encoder(embed_width=embed_width, hidden_width=hidden_width, ner_types=len(type_to_int), **cfg)
|
||||
return model
|
||||
|
||||
def __init__(self, vocab, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = True
|
||||
self.kb = None
|
||||
self.cfg = dict(cfg)
|
||||
self.kb = self.cfg["kb"]
|
||||
self.sgd_context = None
|
||||
|
||||
def set_kb(self, kb):
|
||||
self.kb = kb
|
||||
|
||||
def require_model(self):
|
||||
# Raise an error if the component's model is not initialized.
|
||||
if getattr(self, "model", None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def require_kb(self):
|
||||
# Raise an error if the knowledge base is not initialized.
|
||||
if getattr(self, "kb", None) in (None, True, False):
|
||||
raise ValueError(Errors.E139.format(name=self.name))
|
||||
|
||||
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
||||
self.require_kb()
|
||||
self.cfg["entity_width"] = self.kb.entity_vector_length
|
||||
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.sgd_context = self.create_optimizer()
|
||||
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
||||
return sgd
|
||||
|
||||
def update(self, docs, golds, state=None, drop=0.0, sgd=None, losses=None):
|
||||
self.require_model()
|
||||
self.require_kb()
|
||||
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
|
||||
if not docs or not golds:
|
||||
return 0
|
||||
|
||||
if len(docs) != len(golds):
|
||||
raise ValueError(Errors.E077.format(value="EL training", n_docs=len(docs),
|
||||
n_golds=len(golds)))
|
||||
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
|
||||
context_docs = []
|
||||
entity_encodings = []
|
||||
cats = []
|
||||
priors = []
|
||||
type_vectors = []
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
ents_by_offset = dict()
|
||||
for ent in doc.ents:
|
||||
ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)] = ent
|
||||
for entity in gold.links:
|
||||
start, end, gold_kb = entity
|
||||
mention = doc.text[start:end]
|
||||
|
||||
gold_ent = ents_by_offset[str(ent.start_char) + "_" + str(ent.end_char)]
|
||||
assert gold_ent is not None
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[gold_ent.label_]] = 1
|
||||
|
||||
candidates = self.kb.get_candidates(mention)
|
||||
random.shuffle(candidates)
|
||||
nr_neg = 0
|
||||
for c in candidates:
|
||||
kb_id = c.entity_
|
||||
entity_encoding = c.entity_vector
|
||||
entity_encodings.append(entity_encoding)
|
||||
context_docs.append(doc)
|
||||
type_vectors.append(type_vector)
|
||||
|
||||
if self.cfg.get("prior_weight", 1) > 0:
|
||||
priors.append([c.prior_prob])
|
||||
else:
|
||||
priors.append([0])
|
||||
|
||||
if kb_id == gold_kb:
|
||||
cats.append([1])
|
||||
else:
|
||||
nr_neg += 1
|
||||
cats.append([0])
|
||||
|
||||
if len(entity_encodings) > 0:
|
||||
assert len(priors) == len(entity_encodings) == len(context_docs) == len(cats) == len(type_vectors)
|
||||
|
||||
context_encodings, bp_context = self.model.tok2vec.begin_update(context_docs, drop=drop)
|
||||
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
|
||||
|
||||
mention_encodings = [list(context_encodings[i]) + list(entity_encodings[i]) + priors[i] + type_vectors[i]
|
||||
for i in range(len(entity_encodings))]
|
||||
pred, bp_mention = self.model.begin_update(self.model.ops.asarray(mention_encodings, dtype="float32"), drop=drop)
|
||||
cats = self.model.ops.asarray(cats, dtype="float32")
|
||||
|
||||
loss, d_scores = self.get_loss(prediction=pred, golds=cats, docs=None)
|
||||
mention_gradient = bp_mention(d_scores, sgd=sgd)
|
||||
|
||||
context_gradients = [list(x[0:self.cfg.get("context_width")]) for x in mention_gradient]
|
||||
bp_context(self.model.ops.asarray(context_gradients, dtype="float32"), sgd=self.sgd_context)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
return loss
|
||||
return 0
|
||||
|
||||
def get_loss(self, docs, golds, prediction):
|
||||
d_scores = (prediction - golds)
|
||||
loss = (d_scores ** 2).sum()
|
||||
loss = loss / len(golds)
|
||||
return loss, d_scores
|
||||
|
||||
def get_loss_old(self, docs, golds, scores):
|
||||
# this loss function assumes we're only using positive examples
|
||||
loss, gradients = get_cossim_loss(yh=scores, y=golds)
|
||||
loss = loss / len(golds)
|
||||
return loss, gradients
|
||||
|
||||
def __call__(self, doc):
|
||||
self.set_annotations([doc], scores=None, tensors=None)
|
||||
entities, kb_ids = self.predict([doc])
|
||||
self.set_annotations([doc], entities, kb_ids)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
"""Apply the pipe to a stream of documents.
|
||||
Both __call__ and pipe should delegate to the `predict()`
|
||||
and `set_annotations()` methods.
|
||||
"""
|
||||
for docs in util.minibatch(stream, size=batch_size):
|
||||
docs = list(docs)
|
||||
self.set_annotations(docs, scores=None, tensors=None)
|
||||
entities, kb_ids = self.predict(docs)
|
||||
self.set_annotations(docs, entities, kb_ids)
|
||||
yield from docs
|
||||
|
||||
def set_annotations(self, docs, scores, tensors=None):
|
||||
"""
|
||||
Currently implemented as taking the KB entry with highest prior probability for each named entity
|
||||
TODO: actually use context etc
|
||||
"""
|
||||
for i, doc in enumerate(docs):
|
||||
for ent in doc.ents:
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if candidates:
|
||||
best_candidate = max(candidates, key=lambda c: c.prior_prob)
|
||||
for token in ent:
|
||||
token.ent_kb_id_ = best_candidate.entity_
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
self.require_kb()
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
# TODO
|
||||
pass
|
||||
final_entities = []
|
||||
final_kb_ids = []
|
||||
|
||||
if not docs:
|
||||
return final_entities, final_kb_ids
|
||||
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
||||
context_encodings = self.model.tok2vec(docs)
|
||||
xp = get_array_module(context_encodings)
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for i, doc in enumerate(docs):
|
||||
if len(doc) > 0:
|
||||
context_encoding = context_encodings[i]
|
||||
for ent in doc.ents:
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[ent.label_]] = 1
|
||||
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if candidates:
|
||||
random.shuffle(candidates)
|
||||
|
||||
# this will set the prior probabilities to 0 (just like in training) if their weight is 0
|
||||
prior_probs = xp.asarray([[c.prior_prob] for c in candidates])
|
||||
prior_probs *= self.cfg.get("prior_weight", 1)
|
||||
scores = prior_probs
|
||||
|
||||
if self.cfg.get("context_weight", 1) > 0:
|
||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||
assert len(entity_encodings) == len(prior_probs)
|
||||
mention_encodings = [list(context_encoding) + list(entity_encodings[i])
|
||||
+ list(prior_probs[i]) + type_vector
|
||||
for i in range(len(entity_encodings))]
|
||||
scores = self.model(self.model.ops.asarray(mention_encodings, dtype="float32"))
|
||||
|
||||
# TODO: thresholding
|
||||
best_index = scores.argmax()
|
||||
best_candidate = candidates[best_index]
|
||||
final_entities.append(ent)
|
||||
final_kb_ids.append(best_candidate.entity_)
|
||||
|
||||
return final_entities, final_kb_ids
|
||||
|
||||
def set_annotations(self, docs, entities, kb_ids=None):
|
||||
for entity, kb_id in zip(entities, kb_ids):
|
||||
for token in entity:
|
||||
token.ent_kb_id_ = kb_id
|
||||
|
||||
def to_disk(self, path, exclude=tuple(), **kwargs):
|
||||
serialize = OrderedDict()
|
||||
serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
|
||||
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
||||
serialize["kb"] = lambda p: self.kb.dump(p)
|
||||
if self.model not in (None, True, False):
|
||||
serialize["model"] = lambda p: p.open("wb").write(self.model.to_bytes())
|
||||
exclude = util.get_serialization_exclude(serialize, exclude, kwargs)
|
||||
util.to_disk(path, serialize, exclude)
|
||||
|
||||
def from_disk(self, path, exclude=tuple(), **kwargs):
|
||||
def load_model(p):
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.from_bytes(p.open("rb").read())
|
||||
|
||||
def load_kb(p):
|
||||
kb = KnowledgeBase(vocab=self.vocab, entity_vector_length=self.cfg["entity_width"])
|
||||
kb.load_bulk(p)
|
||||
self.set_kb(kb)
|
||||
|
||||
deserialize = OrderedDict()
|
||||
deserialize["cfg"] = lambda p: self.cfg.update(_load_cfg(p))
|
||||
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
||||
deserialize["kb"] = load_kb
|
||||
deserialize["model"] = load_model
|
||||
exclude = util.get_serialization_exclude(deserialize, exclude, kwargs)
|
||||
util.from_disk(path, deserialize, exclude)
|
||||
return self
|
||||
|
||||
def rehearse(self, docs, sgd=None, losses=None, **config):
|
||||
raise NotImplementedError
|
||||
|
||||
def add_label(self, label):
|
||||
# TODO
|
||||
pass
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Sentencizer(object):
|
||||
|
@ -1196,5 +1405,5 @@ class Sentencizer(object):
|
|||
self.punct_chars = cfg.get("punct_chars", self.default_punct_chars)
|
||||
return self
|
||||
|
||||
|
||||
|
||||
__all__ = ["Tagger", "DependencyParser", "EntityRecognizer", "Tensorizer", "TextCategorizer", "EntityLinker", "Sentencizer"]
|
||||
|
|
|
@ -52,6 +52,7 @@ class Scorer(object):
|
|||
self.labelled = PRFScore()
|
||||
self.tags = PRFScore()
|
||||
self.ner = PRFScore()
|
||||
self.ner_per_ents = dict()
|
||||
self.eval_punct = eval_punct
|
||||
|
||||
@property
|
||||
|
@ -91,6 +92,15 @@ class Scorer(object):
|
|||
"""RETURNS (float): Named entity accuracy (F-score)."""
|
||||
return self.ner.fscore * 100
|
||||
|
||||
@property
|
||||
def ents_per_type(self):
|
||||
"""RETURNS (dict): Scores per entity label.
|
||||
"""
|
||||
return {
|
||||
k: {"p": v.precision * 100, "r": v.recall * 100, "f": v.fscore * 100}
|
||||
for k, v in self.ner_per_ents.items()
|
||||
}
|
||||
|
||||
@property
|
||||
def scores(self):
|
||||
"""RETURNS (dict): All scores with keys `uas`, `las`, `ents_p`,
|
||||
|
@ -102,6 +112,7 @@ class Scorer(object):
|
|||
"ents_p": self.ents_p,
|
||||
"ents_r": self.ents_r,
|
||||
"ents_f": self.ents_f,
|
||||
"ents_per_type": self.ents_per_type,
|
||||
"tags_acc": self.tags_acc,
|
||||
"token_acc": self.token_acc,
|
||||
}
|
||||
|
@ -149,13 +160,31 @@ class Scorer(object):
|
|||
cand_deps.add((gold_i, gold_head, token.dep_.lower()))
|
||||
if "-" not in [token[-1] for token in gold.orig_annot]:
|
||||
cand_ents = set()
|
||||
current_ent = {k.label_: set() for k in doc.ents}
|
||||
current_gold = {k.label_: set() for k in doc.ents}
|
||||
for ent in doc.ents:
|
||||
if ent.label_ not in self.ner_per_ents:
|
||||
self.ner_per_ents[ent.label_] = PRFScore()
|
||||
first = gold.cand_to_gold[ent.start]
|
||||
last = gold.cand_to_gold[ent.end - 1]
|
||||
if first is None or last is None:
|
||||
self.ner.fp += 1
|
||||
self.ner_per_ents[ent.label_].fp += 1
|
||||
else:
|
||||
cand_ents.add((ent.label_, first, last))
|
||||
current_ent[ent.label_].add(
|
||||
tuple(x for x in cand_ents if x[0] == ent.label_)
|
||||
)
|
||||
current_gold[ent.label_].add(
|
||||
tuple(x for x in gold_ents if x[0] == ent.label_)
|
||||
)
|
||||
# Scores per ent
|
||||
[
|
||||
v.score_set(current_ent[k], current_gold[k])
|
||||
for k, v in self.ner_per_ents.items()
|
||||
if k in current_ent
|
||||
]
|
||||
# Score for all ents
|
||||
self.ner.score_set(cand_ents, gold_ents)
|
||||
self.tags.score_set(cand_tags, gold_tags)
|
||||
self.labelled.score_set(cand_deps, gold_deps)
|
||||
|
|
|
@ -3,6 +3,10 @@ from libc.stdint cimport uint8_t, uint32_t, int32_t, uint64_t
|
|||
from .typedefs cimport flags_t, attr_t, hash_t
|
||||
from .parts_of_speech cimport univ_pos_t
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
from libc.stdint cimport int32_t, int64_t
|
||||
|
||||
|
||||
|
||||
cdef struct LexemeC:
|
||||
flags_t flags
|
||||
|
@ -72,3 +76,32 @@ cdef struct TokenC:
|
|||
attr_t ent_type # TODO: Is there a better way to do this? Multiple sources of truth..
|
||||
attr_t ent_kb_id
|
||||
hash_t ent_id
|
||||
|
||||
|
||||
# Internal struct, for storage and disambiguation of entities.
|
||||
cdef struct KBEntryC:
|
||||
|
||||
# The hash of this entry's unique ID/name in the kB
|
||||
hash_t entity_hash
|
||||
|
||||
# Allows retrieval of the entity vector, as an index into a vectors table of the KB.
|
||||
# Can be expanded later to refer to multiple rows (compositional model to reduce storage footprint).
|
||||
int32_t vector_index
|
||||
|
||||
# Allows retrieval of a struct of non-vector features.
|
||||
# This is currently not implemented and set to -1 for the common case where there are no features.
|
||||
int32_t feats_row
|
||||
|
||||
# log probability of entity, based on corpus frequency
|
||||
float prob
|
||||
|
||||
|
||||
# Each alias struct stores a list of Entry pointers with their prior probabilities
|
||||
# for this specific mention/alias.
|
||||
cdef struct AliasC:
|
||||
|
||||
# All entry candidates for this alias
|
||||
vector[int64_t] entry_indices
|
||||
|
||||
# Prior probability P(entity|alias) - should sum up to (at most) 1.
|
||||
vector[float] probs
|
||||
|
|
|
@ -81,6 +81,7 @@ cdef enum symbol_t:
|
|||
DEP
|
||||
ENT_IOB
|
||||
ENT_TYPE
|
||||
ENT_KB_ID
|
||||
HEAD
|
||||
SENT_START
|
||||
SPACY
|
||||
|
|
|
@ -86,6 +86,7 @@ IDS = {
|
|||
"DEP": DEP,
|
||||
"ENT_IOB": ENT_IOB,
|
||||
"ENT_TYPE": ENT_TYPE,
|
||||
"ENT_KB_ID": ENT_KB_ID,
|
||||
"HEAD": HEAD,
|
||||
"SENT_START": SENT_START,
|
||||
"SPACY": SPACY,
|
||||
|
|
|
@ -124,6 +124,22 @@ def ja_tokenizer():
|
|||
return get_lang_class("ja").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def ko_tokenizer():
|
||||
pytest.importorskip("natto")
|
||||
return get_lang_class("ko").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def lt_tokenizer():
|
||||
return get_lang_class("lt").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def lt_lemmatizer():
|
||||
return get_lang_class("lt").Defaults.create_lemmatizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def nb_tokenizer():
|
||||
return get_lang_class("nb").Defaults.create_tokenizer()
|
||||
|
|
0
spacy/tests/lang/ko/__init__.py
Normal file
0
spacy/tests/lang/ko/__init__.py
Normal file
12
spacy/tests/lang/ko/test_lemmatization.py
Normal file
12
spacy/tests/lang/ko/test_lemmatization.py
Normal file
|
@ -0,0 +1,12 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"word,lemma", [("새로운", "새롭"), ("빨간", "빨갛"), ("클수록", "크"), ("뭡니까", "뭣"), ("됐다", "되")]
|
||||
)
|
||||
def test_ko_lemmatizer_assigns(ko_tokenizer, word, lemma):
|
||||
test_lemma = ko_tokenizer(word)[0].lemma_
|
||||
assert test_lemma == lemma
|
46
spacy/tests/lang/ko/test_tokenizer.py
Normal file
46
spacy/tests/lang/ko/test_tokenizer.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
# fmt: off
|
||||
TOKENIZER_TESTS = [("서울 타워 근처에 살고 있습니다.", "서울 타워 근처 에 살 고 있 습니다 ."),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.", "영등포구 에 있 는 맛집 좀 알려 주 세요 .")]
|
||||
|
||||
TAG_TESTS = [("서울 타워 근처에 살고 있습니다.",
|
||||
"NNP NNG NNG JKB VV EC VX EF SF"),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"NNP JKB VV ETM NNG MAG VV VX EP SF")]
|
||||
|
||||
FULL_TAG_TESTS = [("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"NNP JKB VV ETM NNG MAG VV+EC VX EP+EF SF")]
|
||||
|
||||
POS_TESTS = [("서울 타워 근처에 살고 있습니다.",
|
||||
"PROPN NOUN NOUN ADP VERB X AUX X PUNCT"),
|
||||
("영등포구에 있는 맛집 좀 알려주세요.",
|
||||
"PROPN ADP VERB X NOUN ADV VERB AUX X PUNCT")]
|
||||
# fmt: on
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tokens", TOKENIZER_TESTS)
|
||||
def test_ko_tokenizer(ko_tokenizer, text, expected_tokens):
|
||||
tokens = [token.text for token in ko_tokenizer(text)]
|
||||
assert tokens == expected_tokens.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tags", TAG_TESTS)
|
||||
def test_ko_tokenizer_tags(ko_tokenizer, text, expected_tags):
|
||||
tags = [token.tag_ for token in ko_tokenizer(text)]
|
||||
assert tags == expected_tags.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_tags", FULL_TAG_TESTS)
|
||||
def test_ko_tokenizer_full_tags(ko_tokenizer, text, expected_tags):
|
||||
tags = ko_tokenizer(text).user_data["full_tags"]
|
||||
assert tags == expected_tags.split()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text,expected_pos", POS_TESTS)
|
||||
def test_ko_tokenizer_pos(ko_tokenizer, text, expected_pos):
|
||||
pos = [token.pos_ for token in ko_tokenizer(text)]
|
||||
assert pos == expected_pos.split()
|
0
spacy/tests/lang/lt/__init__.py
Normal file
0
spacy/tests/lang/lt/__init__.py
Normal file
15
spacy/tests/lang/lt/test_lemmatizer.py
Normal file
15
spacy/tests/lang/lt/test_lemmatizer.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize("tokens,lemmas", [
|
||||
(["Galime", "vadinti", "gerovės", "valstybe", ",", "turime", "išvystytą", "socialinę", "apsaugą", ",",
|
||||
"sveikatos", "apsaugą", "ir", "prieinamą", "švietimą", "."],
|
||||
["galėti", "vadintas", "gerovė", "valstybė", ",", "turėti", "išvystytas", "socialinis",
|
||||
"apsauga", ",", "sveikata", "apsauga", "ir", "prieinamas", "švietimas", "."]),
|
||||
(["taip", ",", "uoliai", "tyrinėjau", "ir", "pasirinkau", "geriausią", "variantą", "."],
|
||||
["taip", ",", "uolus", "tyrinėti", "ir", "pasirinkti", "geras", "variantas", "."])])
|
||||
def test_lt_lemmatizer(lt_lemmatizer, tokens, lemmas):
|
||||
assert lemmas == [lt_lemmatizer.lookup(token) for token in tokens]
|
56
spacy/tests/lang/lt/test_text.py
Normal file
56
spacy/tests/lang/lt/test_text.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_lt_tokenizer_handles_long_text(lt_tokenizer):
|
||||
text = """Tokios sausros kriterijus atitinka pirmadienį atlikti skaičiavimai, palyginus faktinį ir žemiausią vidutinį daugiametį vandens lygį. Nustatyta, kad iš 48 šalies vandens matavimo stočių 28-iose stotyse vandens lygis yra žemesnis arba lygus žemiausiam vidutiniam daugiamečiam šiltojo laikotarpio vandens lygiui."""
|
||||
tokens = lt_tokenizer(text)
|
||||
assert len(tokens) == 42
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,length",
|
||||
[
|
||||
(
|
||||
"177R Parodų rūmai–Ozo g. nuo vasario 18 d. bus skelbiamas interneto tinklalapyje.",
|
||||
15,
|
||||
),
|
||||
(
|
||||
"ISM universiteto doc. dr. Ieva Augutytė-Kvedaravičienė pastebi, kad tyrimais nustatyti elgesio pokyčiai.",
|
||||
16,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_lt_tokenizer_handles_punct_abbrev(lt_tokenizer, text, length):
|
||||
tokens = lt_tokenizer(text)
|
||||
assert len(tokens) == length
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", ["km.", "pvz.", "biol."])
|
||||
def test_lt_tokenizer_abbrev_exceptions(lt_tokenizer, text):
|
||||
tokens = lt_tokenizer(text)
|
||||
assert len(tokens) == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"text,match",
|
||||
[
|
||||
("10", True),
|
||||
("1", True),
|
||||
("10,000", True),
|
||||
("10,00", True),
|
||||
("999.0", True),
|
||||
("vienas", True),
|
||||
("du", True),
|
||||
("milijardas", True),
|
||||
("šuo", False),
|
||||
(",", False),
|
||||
("1/2", True),
|
||||
],
|
||||
)
|
||||
def test_lt_lex_attrs_like_number(lt_tokenizer, text, match):
|
||||
tokens = lt_tokenizer(text)
|
||||
assert len(tokens) == 1
|
||||
assert tokens[0].like_num == match
|
|
@ -5,7 +5,6 @@ import pytest
|
|||
import re
|
||||
from spacy.matcher import Matcher, DependencyMatcher
|
||||
from spacy.tokens import Doc, Token
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -288,24 +287,43 @@ def deps():
|
|||
def dependency_matcher(en_vocab):
|
||||
def is_brown_yellow(text):
|
||||
return bool(re.compile(r"brown|yellow|over").match(text))
|
||||
|
||||
IS_BROWN_YELLOW = en_vocab.add_flag(is_brown_yellow)
|
||||
|
||||
pattern1 = [
|
||||
{"SPEC": {"NODE_NAME": "fox"}, "PATTERN": {"ORTH": "fox"}},
|
||||
{"SPEC": {"NODE_NAME": "q", "NBOR_RELOP": ">", "NBOR_NAME": "fox"},"PATTERN": {"ORTH": "quick", "DEP": "amod"}},
|
||||
{"SPEC": {"NODE_NAME": "r", "NBOR_RELOP": ">", "NBOR_NAME": "fox"}, "PATTERN": {IS_BROWN_YELLOW: True}},
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "q", "NBOR_RELOP": ">", "NBOR_NAME": "fox"},
|
||||
"PATTERN": {"ORTH": "quick", "DEP": "amod"},
|
||||
},
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "r", "NBOR_RELOP": ">", "NBOR_NAME": "fox"},
|
||||
"PATTERN": {IS_BROWN_YELLOW: True},
|
||||
},
|
||||
]
|
||||
|
||||
pattern2 = [
|
||||
{"SPEC": {"NODE_NAME": "jumped"}, "PATTERN": {"ORTH": "jumped"}},
|
||||
{"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
|
||||
{"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}}
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"},
|
||||
"PATTERN": {"ORTH": "fox"},
|
||||
},
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"},
|
||||
"PATTERN": {"ORTH": "fox"},
|
||||
},
|
||||
]
|
||||
|
||||
pattern3 = [
|
||||
{"SPEC": {"NODE_NAME": "jumped"}, "PATTERN": {"ORTH": "jumped"}},
|
||||
{"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
|
||||
{"SPEC": {"NODE_NAME": "r", "NBOR_RELOP": ">>", "NBOR_NAME": "fox"}, "PATTERN": {"ORTH": "brown"}}
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"},
|
||||
"PATTERN": {"ORTH": "fox"},
|
||||
},
|
||||
{
|
||||
"SPEC": {"NODE_NAME": "r", "NBOR_RELOP": ">>", "NBOR_NAME": "fox"},
|
||||
"PATTERN": {"ORTH": "brown"},
|
||||
},
|
||||
]
|
||||
|
||||
matcher = DependencyMatcher(en_vocab)
|
||||
|
@ -320,9 +338,9 @@ def test_dependency_matcher_compile(dependency_matcher):
|
|||
assert len(dependency_matcher) == 3
|
||||
|
||||
|
||||
def test_dependency_matcher(dependency_matcher, text, heads, deps):
|
||||
doc = get_doc(dependency_matcher.vocab, text.split(), heads=heads, deps=deps)
|
||||
matches = dependency_matcher(doc)
|
||||
# assert matches[0][1] == [[3, 1, 2]]
|
||||
# assert matches[1][1] == [[4, 3, 3]]
|
||||
# assert matches[2][1] == [[4, 3, 2]]
|
||||
# def test_dependency_matcher(dependency_matcher, text, heads, deps):
|
||||
# doc = get_doc(dependency_matcher.vocab, text.split(), heads=heads, deps=deps)
|
||||
# matches = dependency_matcher(doc)
|
||||
# assert matches[0][1] == [[3, 1, 2]]
|
||||
# assert matches[1][1] == [[4, 3, 3]]
|
||||
# assert matches[2][1] == [[4, 3, 2]]
|
||||
|
|
|
@ -1,91 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
return English()
|
||||
|
||||
|
||||
def test_kb_valid_entities(nlp):
|
||||
"""Test the valid construction of a KB with 3 entities and two aliases"""
|
||||
mykb = KnowledgeBase(nlp.vocab)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity=u'Q1', prob=0.9)
|
||||
mykb.add_entity(entity=u'Q2')
|
||||
mykb.add_entity(entity=u'Q3', prob=0.5)
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias=u'douglas', entities=[u'Q2', u'Q3'], probabilities=[0.8, 0.2])
|
||||
mykb.add_alias(alias=u'adam', entities=[u'Q2'], probabilities=[0.9])
|
||||
|
||||
# test the size of the corresponding KB
|
||||
assert(mykb.get_size_entities() == 3)
|
||||
assert(mykb.get_size_aliases() == 2)
|
||||
|
||||
|
||||
def test_kb_invalid_entities(nlp):
|
||||
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
|
||||
mykb = KnowledgeBase(nlp.vocab)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity=u'Q1', prob=0.9)
|
||||
mykb.add_entity(entity=u'Q2', prob=0.2)
|
||||
mykb.add_entity(entity=u'Q3', prob=0.5)
|
||||
|
||||
# adding aliases - should fail because one of the given IDs is not valid
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias=u'douglas', entities=[u'Q2', u'Q342'], probabilities=[0.8, 0.2])
|
||||
|
||||
|
||||
def test_kb_invalid_probabilities(nlp):
|
||||
"""Test the invalid construction of a KB with wrong prior probabilities"""
|
||||
mykb = KnowledgeBase(nlp.vocab)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity=u'Q1', prob=0.9)
|
||||
mykb.add_entity(entity=u'Q2', prob=0.2)
|
||||
mykb.add_entity(entity=u'Q3', prob=0.5)
|
||||
|
||||
# adding aliases - should fail because the sum of the probabilities exceeds 1
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias=u'douglas', entities=[u'Q2', u'Q3'], probabilities=[0.8, 0.4])
|
||||
|
||||
|
||||
def test_kb_invalid_combination(nlp):
|
||||
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
|
||||
mykb = KnowledgeBase(nlp.vocab)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity=u'Q1', prob=0.9)
|
||||
mykb.add_entity(entity=u'Q2', prob=0.2)
|
||||
mykb.add_entity(entity=u'Q3', prob=0.5)
|
||||
|
||||
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias=u'douglas', entities=[u'Q2', u'Q3'], probabilities=[0.3, 0.4, 0.1])
|
||||
|
||||
|
||||
def test_candidate_generation(nlp):
|
||||
"""Test correct candidate generation"""
|
||||
mykb = KnowledgeBase(nlp.vocab)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity=u'Q1', prob=0.9)
|
||||
mykb.add_entity(entity=u'Q2', prob=0.2)
|
||||
mykb.add_entity(entity=u'Q3', prob=0.5)
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias=u'douglas', entities=[u'Q2', u'Q3'], probabilities=[0.8, 0.2])
|
||||
mykb.add_alias(alias=u'adam', entities=[u'Q2'], probabilities=[0.9])
|
||||
|
||||
# test the size of the relevant candidates
|
||||
assert(len(mykb.get_candidates(u'douglas')) == 2)
|
||||
assert(len(mykb.get_candidates(u'adam')) == 1)
|
||||
assert(len(mykb.get_candidates(u'shrubbery')) == 0)
|
145
spacy/tests/pipeline/test_entity_linker.py
Normal file
145
spacy/tests/pipeline/test_entity_linker.py
Normal file
|
@ -0,0 +1,145 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.lang.en import English
|
||||
from spacy.pipeline import EntityRuler
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def nlp():
|
||||
return English()
|
||||
|
||||
|
||||
def test_kb_valid_entities(nlp):
|
||||
"""Test the valid construction of a KB with 3 entities and two aliases"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.5, entity_vector=[2])
|
||||
mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2])
|
||||
mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9])
|
||||
|
||||
# test the size of the corresponding KB
|
||||
assert(mykb.get_size_entities() == 3)
|
||||
assert(mykb.get_size_aliases() == 2)
|
||||
|
||||
|
||||
def test_kb_invalid_entities(nlp):
|
||||
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because one of the given IDs is not valid
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias='douglas', entities=['Q2', 'Q342'], probabilities=[0.8, 0.2])
|
||||
|
||||
|
||||
def test_kb_invalid_probabilities(nlp):
|
||||
"""Test the invalid construction of a KB with wrong prior probabilities"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because the sum of the probabilities exceeds 1
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.4])
|
||||
|
||||
|
||||
def test_kb_invalid_combination(nlp):
|
||||
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.3, 0.4, 0.1])
|
||||
|
||||
|
||||
def test_kb_invalid_entity_vector(nlp):
|
||||
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1, 2, 3])
|
||||
|
||||
# this should fail because the kb's expected entity vector length is 3
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
|
||||
|
||||
|
||||
def test_candidate_generation(nlp):
|
||||
"""Test correct candidate generation"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity='Q3', prob=0.5, entity_vector=[3])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias='douglas', entities=['Q2', 'Q3'], probabilities=[0.8, 0.2])
|
||||
mykb.add_alias(alias='adam', entities=['Q2'], probabilities=[0.9])
|
||||
|
||||
# test the size of the relevant candidates
|
||||
assert(len(mykb.get_candidates('douglas')) == 2)
|
||||
assert(len(mykb.get_candidates('adam')) == 1)
|
||||
assert(len(mykb.get_candidates('shrubbery')) == 0)
|
||||
|
||||
|
||||
def test_preserving_links_asdoc(nlp):
|
||||
"""Test that Span.as_doc preserves the existing entity links"""
|
||||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity='Q1', prob=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity='Q2', prob=0.8, entity_vector=[1])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias='Boston', entities=['Q1'], probabilities=[0.7])
|
||||
mykb.add_alias(alias='Denver', entities=['Q2'], probabilities=[0.6])
|
||||
|
||||
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
|
||||
sentencizer = nlp.create_pipe("sentencizer")
|
||||
nlp.add_pipe(sentencizer)
|
||||
|
||||
ruler = EntityRuler(nlp)
|
||||
patterns = [{"label": "GPE", "pattern": "Boston"},
|
||||
{"label": "GPE", "pattern": "Denver"}]
|
||||
ruler.add_patterns(patterns)
|
||||
nlp.add_pipe(ruler)
|
||||
|
||||
el_pipe = nlp.create_pipe(name='entity_linker', config={"context_width": 64})
|
||||
el_pipe.set_kb(mykb)
|
||||
el_pipe.begin_training()
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
|
||||
# test whether the entity links are preserved by the `as_doc()` function
|
||||
text = "She lives in Boston. He lives in Denver."
|
||||
doc = nlp(text)
|
||||
for ent in doc.ents:
|
||||
orig_text = ent.text
|
||||
orig_kb_id = ent.kb_id_
|
||||
sent_doc = ent.sent.as_doc()
|
||||
for s_ent in sent_doc.ents:
|
||||
if s_ent.text == orig_text:
|
||||
assert s_ent.kb_id_ == orig_kb_id
|
|
@ -106,5 +106,24 @@ def test_entity_ruler_serialize_bytes(nlp, patterns):
|
|||
assert len(new_ruler) == 0
|
||||
assert len(new_ruler.labels) == 0
|
||||
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
||||
assert len(new_ruler) == len(patterns)
|
||||
assert len(new_ruler.labels) == 4
|
||||
assert len(new_ruler.patterns) == len(ruler.patterns)
|
||||
for pattern in ruler.patterns:
|
||||
assert pattern in new_ruler.patterns
|
||||
assert sorted(new_ruler.labels) == sorted(ruler.labels)
|
||||
|
||||
|
||||
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
|
||||
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
|
||||
assert len(ruler) == len(patterns)
|
||||
assert len(ruler.labels) == 4
|
||||
ruler_bytes = ruler.to_bytes()
|
||||
new_ruler = EntityRuler(nlp)
|
||||
assert len(new_ruler) == 0
|
||||
assert len(new_ruler.labels) == 0
|
||||
assert new_ruler.phrase_matcher_attr is None
|
||||
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
||||
assert len(new_ruler) == len(patterns)
|
||||
assert len(new_ruler.labels) == 4
|
||||
assert new_ruler.phrase_matcher_attr == "LOWER"
|
||||
|
|
|
@ -4,6 +4,7 @@ from __future__ import unicode_literals
|
|||
import pytest
|
||||
import numpy
|
||||
from spacy.tokens import Doc
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.displacy import render
|
||||
from spacy.gold import iob_to_biluo
|
||||
from spacy.lang.it import Italian
|
||||
|
@ -123,6 +124,15 @@ def test_issue2396(en_vocab):
|
|||
assert (span.get_lca_matrix() == matrix).all()
|
||||
|
||||
|
||||
def test_issue2464(en_vocab):
|
||||
"""Test problem with successive ?. This is the same bug, so putting it here."""
|
||||
matcher = Matcher(en_vocab)
|
||||
doc = Doc(en_vocab, words=["a", "b"])
|
||||
matcher.add("4", None, [{"OP": "?"}, {"OP": "?"}])
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 3
|
||||
|
||||
|
||||
def test_issue2482():
|
||||
"""Test we can serialize and deserialize a blank NER or parser model."""
|
||||
nlp = Italian()
|
||||
|
|
334
spacy/tests/regression/test_issue3001-3500.py
Normal file
334
spacy/tests/regression/test_issue3001-3500.py
Normal file
|
@ -0,0 +1,334 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.de import German
|
||||
from spacy.pipeline import EntityRuler, EntityRecognizer
|
||||
from spacy.matcher import Matcher, PhraseMatcher
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.attrs import ENT_IOB, ENT_TYPE
|
||||
from spacy.compat import pickle, is_python2, unescape_unicode
|
||||
from spacy import displacy
|
||||
from spacy.util import decaying
|
||||
import numpy
|
||||
import re
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_issue3002():
|
||||
"""Test that the tokenizer doesn't hang on a long list of dots"""
|
||||
nlp = German()
|
||||
doc = nlp(
|
||||
"880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl"
|
||||
)
|
||||
assert len(doc) == 5
|
||||
|
||||
|
||||
def test_issue3009(en_vocab):
|
||||
"""Test problem with matcher quantifiers"""
|
||||
patterns = [
|
||||
[{"LEMMA": "have"}, {"LOWER": "to"}, {"LOWER": "do"}, {"POS": "ADP"}],
|
||||
[
|
||||
{"LEMMA": "have"},
|
||||
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"},
|
||||
{"LOWER": "to"},
|
||||
{"LOWER": "do"},
|
||||
{"POS": "ADP"},
|
||||
],
|
||||
[
|
||||
{"LEMMA": "have"},
|
||||
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"},
|
||||
{"LOWER": "to"},
|
||||
{"LOWER": "do"},
|
||||
{"POS": "ADP"},
|
||||
],
|
||||
]
|
||||
words = ["also", "has", "to", "do", "with"]
|
||||
tags = ["RB", "VBZ", "TO", "VB", "IN"]
|
||||
doc = get_doc(en_vocab, words=words, tags=tags)
|
||||
matcher = Matcher(en_vocab)
|
||||
for i, pattern in enumerate(patterns):
|
||||
matcher.add(str(i), None, pattern)
|
||||
matches = matcher(doc)
|
||||
assert matches
|
||||
|
||||
|
||||
def test_issue3012(en_vocab):
|
||||
"""Test that the is_tagged attribute doesn't get overwritten when we from_array
|
||||
without tag information."""
|
||||
words = ["This", "is", "10", "%", "."]
|
||||
tags = ["DT", "VBZ", "CD", "NN", "."]
|
||||
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
|
||||
ents = [(2, 4, "PERCENT")]
|
||||
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
|
||||
assert doc.is_tagged
|
||||
|
||||
expected = ("10", "NUM", "CD", "PERCENT")
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
header = [ENT_IOB, ENT_TYPE]
|
||||
ent_array = doc.to_array(header)
|
||||
doc.from_array(header, ent_array)
|
||||
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
# Serializing then deserializing
|
||||
doc_bytes = doc.to_bytes()
|
||||
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
|
||||
assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected
|
||||
|
||||
|
||||
def test_issue3199():
|
||||
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
|
||||
is available. To make this test future-proof, we're constructing a Doc
|
||||
with a new Vocab here and setting is_parsed to make sure the noun chunks run.
|
||||
"""
|
||||
doc = Doc(Vocab(), words=["This", "is", "a", "sentence"])
|
||||
doc.is_parsed = True
|
||||
assert list(doc[0:3].noun_chunks) == []
|
||||
|
||||
|
||||
def test_issue3209():
|
||||
"""Test issue that occurred in spaCy nightly where NER labels were being
|
||||
mapped to classes incorrectly after loading the model, when the labels
|
||||
were added using ner.add_label().
|
||||
"""
|
||||
nlp = English()
|
||||
ner = nlp.create_pipe("ner")
|
||||
nlp.add_pipe(ner)
|
||||
|
||||
ner.add_label("ANIMAL")
|
||||
nlp.begin_training()
|
||||
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
|
||||
assert ner.move_names == move_names
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe(nlp2.create_pipe("ner"))
|
||||
nlp2.from_bytes(nlp.to_bytes())
|
||||
assert nlp2.get_pipe("ner").move_names == move_names
|
||||
|
||||
|
||||
def test_issue3248_1():
|
||||
"""Test that the PhraseMatcher correctly reports its number of rules, not
|
||||
total number of patterns."""
|
||||
nlp = English()
|
||||
matcher = PhraseMatcher(nlp.vocab)
|
||||
matcher.add("TEST1", None, nlp("a"), nlp("b"), nlp("c"))
|
||||
matcher.add("TEST2", None, nlp("d"))
|
||||
assert len(matcher) == 2
|
||||
|
||||
|
||||
def test_issue3248_2():
|
||||
"""Test that the PhraseMatcher can be pickled correctly."""
|
||||
nlp = English()
|
||||
matcher = PhraseMatcher(nlp.vocab)
|
||||
matcher.add("TEST1", None, nlp("a"), nlp("b"), nlp("c"))
|
||||
matcher.add("TEST2", None, nlp("d"))
|
||||
data = pickle.dumps(matcher)
|
||||
new_matcher = pickle.loads(data)
|
||||
assert len(new_matcher) == len(matcher)
|
||||
|
||||
|
||||
def test_issue3277(es_tokenizer):
|
||||
"""Test that hyphens are split correctly as prefixes."""
|
||||
doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.")
|
||||
assert len(doc) == 14
|
||||
assert doc[0].text == "\u2014"
|
||||
assert doc[5].text == "\u2013"
|
||||
assert doc[9].text == "\u2013"
|
||||
|
||||
|
||||
def test_issue3288(en_vocab):
|
||||
"""Test that retokenization works correctly via displaCy when punctuation
|
||||
is merged onto the preceeding token and tensor is resized."""
|
||||
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
|
||||
heads = [1, 0, -1, 1, 0, 1, -2, -3]
|
||||
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
|
||||
displacy.render(doc)
|
||||
|
||||
|
||||
def test_issue3289():
|
||||
"""Test that Language.to_bytes handles serializing a pipeline component
|
||||
with an uninitialized model."""
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("textcat"))
|
||||
bytes_data = nlp.to_bytes()
|
||||
new_nlp = English()
|
||||
new_nlp.add_pipe(nlp.create_pipe("textcat"))
|
||||
new_nlp.from_bytes(bytes_data)
|
||||
|
||||
|
||||
def test_issue3328(en_vocab):
|
||||
doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"])
|
||||
matcher = Matcher(en_vocab)
|
||||
patterns = [
|
||||
[{"LOWER": {"IN": ["hello", "how"]}}],
|
||||
[{"LOWER": {"IN": ["you", "doing"]}}],
|
||||
]
|
||||
matcher.add("TEST", None, *patterns)
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 4
|
||||
matched_texts = [doc[start:end].text for _, start, end in matches]
|
||||
assert matched_texts == ["Hello", "how", "you", "doing"]
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_issue3331(en_vocab):
|
||||
"""Test that duplicate patterns for different rules result in multiple
|
||||
matches, one per rule.
|
||||
"""
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
matcher.add("A", None, Doc(en_vocab, words=["Barack", "Obama"]))
|
||||
matcher.add("B", None, Doc(en_vocab, words=["Barack", "Obama"]))
|
||||
doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"])
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 2
|
||||
match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]]
|
||||
assert sorted(match_ids) == ["A", "B"]
|
||||
|
||||
|
||||
def test_issue3345():
|
||||
"""Test case where preset entity crosses sentence boundary."""
|
||||
nlp = English()
|
||||
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
|
||||
doc[4].is_sent_start = True
|
||||
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
|
||||
ner = EntityRecognizer(doc.vocab)
|
||||
# Add the OUT action. I wouldn't have thought this would be necessary...
|
||||
ner.moves.add_action(5, "")
|
||||
ner.add_label("GPE")
|
||||
doc = ruler(doc)
|
||||
# Get into the state just before "New"
|
||||
state = ner.moves.init_batch([doc])[0]
|
||||
ner.moves.apply_transition(state, "O")
|
||||
ner.moves.apply_transition(state, "O")
|
||||
ner.moves.apply_transition(state, "O")
|
||||
# Check that B-GPE is valid.
|
||||
assert ner.moves.is_valid(state, "B-GPE")
|
||||
|
||||
|
||||
if is_python2:
|
||||
# If we have this test in Python 3, pytest chokes, as it can't print the
|
||||
# string above in the xpass message.
|
||||
prefix_search = (
|
||||
b"^\xc2\xa7|^%|^=|^\xe2\x80\x94|^\xe2\x80\x93|^\\+(?![0-9])"
|
||||
b"|^\xe2\x80\xa6|^\xe2\x80\xa6\xe2\x80\xa6|^,|^:|^;|^\\!|^\\?"
|
||||
b"|^\xc2\xbf|^\xd8\x9f|^\xc2\xa1|^\\(|^\\)|^\\[|^\\]|^\\{|^\\}"
|
||||
b"|^<|^>|^_|^#|^\\*|^&|^\xe3\x80\x82|^\xef\xbc\x9f|^\xef\xbc\x81|"
|
||||
b"^\xef\xbc\x8c|^\xe3\x80\x81|^\xef\xbc\x9b|^\xef\xbc\x9a|"
|
||||
b"^\xef\xbd\x9e|^\xc2\xb7|^\xe0\xa5\xa4|^\xd8\x8c|^\xd8\x9b|"
|
||||
b"^\xd9\xaa|^\\.\\.+|^\xe2\x80\xa6|^\\'|^\"|^\xe2\x80\x9d|"
|
||||
b"^\xe2\x80\x9c|^`|^\xe2\x80\x98|^\xc2\xb4|^\xe2\x80\x99|"
|
||||
b"^\xe2\x80\x9a|^,|^\xe2\x80\x9e|^\xc2\xbb|^\xc2\xab|^\xe3\x80\x8c|"
|
||||
b"^\xe3\x80\x8d|^\xe3\x80\x8e|^\xe3\x80\x8f|^\xef\xbc\x88|"
|
||||
b"^\xef\xbc\x89|^\xe3\x80\x94|^\xe3\x80\x95|^\xe3\x80\x90|"
|
||||
b"^\xe3\x80\x91|^\xe3\x80\x8a|^\xe3\x80\x8b|^\xe3\x80\x88|"
|
||||
b"^\xe3\x80\x89|^\\$|^\xc2\xa3|^\xe2\x82\xac|^\xc2\xa5|^\xe0\xb8\xbf|"
|
||||
b"^US\\$|^C\\$|^A\\$|^\xe2\x82\xbd|^\xef\xb7\xbc|^\xe2\x82\xb4|"
|
||||
b"^[\\u00A6\\u00A9\\u00AE\\u00B0\\u0482\\u058D\\u058E\\u060E\\u060F"
|
||||
b"\\u06DE\\u06E9\\u06FD\\u06FE\\u07F6\\u09FA\\u0B70\\u0BF3-\\u0BF8"
|
||||
b"\\u0BFA\\u0C7F\\u0D4F\\u0D79\\u0F01-\\u0F03\\u0F13\\u0F15-\\u0F17"
|
||||
b"\\u0F1A-\\u0F1F\\u0F34\\u0F36\\u0F38\\u0FBE-\\u0FC5\\u0FC7-\\u0FCC"
|
||||
b"\\u0FCE\\u0FCF\\u0FD5-\\u0FD8\\u109E\\u109F\\u1390-\\u1399\\u1940"
|
||||
b"\\u19DE-\\u19FF\\u1B61-\\u1B6A\\u1B74-\\u1B7C\\u2100\\u2101\\u2103"
|
||||
b"-\\u2106\\u2108\\u2109\\u2114\\u2116\\u2117\\u211E-\\u2123\\u2125"
|
||||
b"\\u2127\\u2129\\u212E\\u213A\\u213B\\u214A\\u214C\\u214D\\u214F"
|
||||
b"\\u218A\\u218B\\u2195-\\u2199\\u219C-\\u219F\\u21A1\\u21A2\\u21A4"
|
||||
b"\\u21A5\\u21A7-\\u21AD\\u21AF-\\u21CD\\u21D0\\u21D1\\u21D3\\u21D5"
|
||||
b"-\\u21F3\\u2300-\\u2307\\u230C-\\u231F\\u2322-\\u2328\\u232B"
|
||||
b"-\\u237B\\u237D-\\u239A\\u23B4-\\u23DB\\u23E2-\\u2426\\u2440"
|
||||
b"-\\u244A\\u249C-\\u24E9\\u2500-\\u25B6\\u25B8-\\u25C0\\u25C2"
|
||||
b"-\\u25F7\\u2600-\\u266E\\u2670-\\u2767\\u2794-\\u27BF\\u2800"
|
||||
b"-\\u28FF\\u2B00-\\u2B2F\\u2B45\\u2B46\\u2B4D-\\u2B73\\u2B76"
|
||||
b"-\\u2B95\\u2B98-\\u2BC8\\u2BCA-\\u2BFE\\u2CE5-\\u2CEA\\u2E80"
|
||||
b"-\\u2E99\\u2E9B-\\u2EF3\\u2F00-\\u2FD5\\u2FF0-\\u2FFB\\u3004"
|
||||
b"\\u3012\\u3013\\u3020\\u3036\\u3037\\u303E\\u303F\\u3190\\u3191"
|
||||
b"\\u3196-\\u319F\\u31C0-\\u31E3\\u3200-\\u321E\\u322A-\\u3247\\u3250"
|
||||
b"\\u3260-\\u327F\\u328A-\\u32B0\\u32C0-\\u32FE\\u3300-\\u33FF\\u4DC0"
|
||||
b"-\\u4DFF\\uA490-\\uA4C6\\uA828-\\uA82B\\uA836\\uA837\\uA839\\uAA77"
|
||||
b"-\\uAA79\\uFDFD\\uFFE4\\uFFE8\\uFFED\\uFFEE\\uFFFC\\uFFFD\\U00010137"
|
||||
b"-\\U0001013F\\U00010179-\\U00010189\\U0001018C-\\U0001018E"
|
||||
b"\\U00010190-\\U0001019B\\U000101A0\\U000101D0-\\U000101FC\\U00010877"
|
||||
b"\\U00010878\\U00010AC8\\U0001173F\\U00016B3C-\\U00016B3F\\U00016B45"
|
||||
b"\\U0001BC9C\\U0001D000-\\U0001D0F5\\U0001D100-\\U0001D126\\U0001D129"
|
||||
b"-\\U0001D164\\U0001D16A-\\U0001D16C\\U0001D183\\U0001D184\\U0001D18C"
|
||||
b"-\\U0001D1A9\\U0001D1AE-\\U0001D1E8\\U0001D200-\\U0001D241\\U0001D245"
|
||||
b"\\U0001D300-\\U0001D356\\U0001D800-\\U0001D9FF\\U0001DA37-\\U0001DA3A"
|
||||
b"\\U0001DA6D-\\U0001DA74\\U0001DA76-\\U0001DA83\\U0001DA85\\U0001DA86"
|
||||
b"\\U0001ECAC\\U0001F000-\\U0001F02B\\U0001F030-\\U0001F093\\U0001F0A0"
|
||||
b"-\\U0001F0AE\\U0001F0B1-\\U0001F0BF\\U0001F0C1-\\U0001F0CF\\U0001F0D1"
|
||||
b"-\\U0001F0F5\\U0001F110-\\U0001F16B\\U0001F170-\\U0001F1AC\\U0001F1E6"
|
||||
b"-\\U0001F202\\U0001F210-\\U0001F23B\\U0001F240-\\U0001F248\\U0001F250"
|
||||
b"\\U0001F251\\U0001F260-\\U0001F265\\U0001F300-\\U0001F3FA\\U0001F400"
|
||||
b"-\\U0001F6D4\\U0001F6E0-\\U0001F6EC\\U0001F6F0-\\U0001F6F9\\U0001F700"
|
||||
b"-\\U0001F773\\U0001F780-\\U0001F7D8\\U0001F800-\\U0001F80B\\U0001F810"
|
||||
b"-\\U0001F847\\U0001F850-\\U0001F859\\U0001F860-\\U0001F887\\U0001F890"
|
||||
b"-\\U0001F8AD\\U0001F900-\\U0001F90B\\U0001F910-\\U0001F93E\\U0001F940"
|
||||
b"-\\U0001F970\\U0001F973-\\U0001F976\\U0001F97A\\U0001F97C-\\U0001F9A2"
|
||||
b"\\U0001F9B0-\\U0001F9B9\\U0001F9C0-\\U0001F9C2\\U0001F9D0-\\U0001F9FF"
|
||||
b"\\U0001FA60-\\U0001FA6D]"
|
||||
)
|
||||
|
||||
def test_issue3356():
|
||||
pattern = re.compile(unescape_unicode(prefix_search.decode("utf8")))
|
||||
assert not pattern.search("hello")
|
||||
|
||||
|
||||
def test_issue3410():
|
||||
texts = ["Hello world", "This is a test"]
|
||||
nlp = English()
|
||||
matcher = Matcher(nlp.vocab)
|
||||
phrasematcher = PhraseMatcher(nlp.vocab)
|
||||
with pytest.deprecated_call():
|
||||
docs = list(nlp.pipe(texts, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
docs = list(nlp.tokenizer.pipe(texts, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
list(matcher.pipe(docs, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
list(phrasematcher.pipe(docs, n_threads=4))
|
||||
|
||||
|
||||
def test_issue3447():
|
||||
sizes = decaying(10.0, 1.0, 0.5)
|
||||
size = next(sizes)
|
||||
assert size == 10.0
|
||||
size = next(sizes)
|
||||
assert size == 10.0 - 0.5
|
||||
size = next(sizes)
|
||||
assert size == 10.0 - 0.5 - 0.5
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="default suffix rules avoid one upper-case letter before dot")
|
||||
def test_issue3449():
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
text1 = "He gave the ball to I. Do you want to go to the movies with I?"
|
||||
text2 = "He gave the ball to I. Do you want to go to the movies with I?"
|
||||
text3 = "He gave the ball to I.\nDo you want to go to the movies with I?"
|
||||
t1 = nlp(text1)
|
||||
t2 = nlp(text2)
|
||||
t3 = nlp(text3)
|
||||
assert t1[5].text == "I"
|
||||
assert t2[5].text == "I"
|
||||
assert t3[5].text == "I"
|
||||
|
||||
|
||||
def test_issue3468():
|
||||
"""Test that sentence boundaries are set correctly so Doc.is_sentenced can
|
||||
be restored after serialization."""
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
doc = nlp("Hello world")
|
||||
assert doc[0].is_sent_start
|
||||
assert doc.is_sentenced
|
||||
assert len(list(doc.sents)) == 1
|
||||
doc_bytes = doc.to_bytes()
|
||||
new_doc = Doc(nlp.vocab).from_bytes(doc_bytes)
|
||||
assert new_doc[0].is_sent_start
|
||||
assert new_doc.is_sentenced
|
||||
assert len(list(new_doc.sents)) == 1
|
|
@ -1,11 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.de import German
|
||||
|
||||
|
||||
def test_issue3002():
|
||||
"""Test that the tokenizer doesn't hang on a long list of dots"""
|
||||
nlp = German()
|
||||
doc = nlp('880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.671 ist eine lange Zahl')
|
||||
assert len(doc) == 5
|
|
@ -1,67 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
PATTERNS = [
|
||||
("1", [[{"LEMMA": "have"}, {"LOWER": "to"}, {"LOWER": "do"}, {"POS": "ADP"}]]),
|
||||
(
|
||||
"2",
|
||||
[
|
||||
[
|
||||
{"LEMMA": "have"},
|
||||
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "*"},
|
||||
{"LOWER": "to"},
|
||||
{"LOWER": "do"},
|
||||
{"POS": "ADP"},
|
||||
]
|
||||
],
|
||||
),
|
||||
(
|
||||
"3",
|
||||
[
|
||||
[
|
||||
{"LEMMA": "have"},
|
||||
{"IS_ASCII": True, "IS_PUNCT": False, "OP": "?"},
|
||||
{"LOWER": "to"},
|
||||
{"LOWER": "do"},
|
||||
{"POS": "ADP"},
|
||||
]
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def doc(en_tokenizer):
|
||||
doc = en_tokenizer("also has to do with")
|
||||
doc[0].tag_ = "RB"
|
||||
doc[1].tag_ = "VBZ"
|
||||
doc[2].tag_ = "TO"
|
||||
doc[3].tag_ = "VB"
|
||||
doc[4].tag_ = "IN"
|
||||
return doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def matcher(en_tokenizer):
|
||||
return Matcher(en_tokenizer.vocab)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pattern", PATTERNS)
|
||||
def test_issue3009(doc, matcher, pattern):
|
||||
"""Test problem with matcher quantifiers"""
|
||||
matcher.add(pattern[0], None, *pattern[1])
|
||||
matches = matcher(doc)
|
||||
assert matches
|
||||
|
||||
|
||||
def test_issue2464(matcher):
|
||||
"""Test problem with successive ?. This is the same bug, so putting it here."""
|
||||
doc = Doc(matcher.vocab, words=["a", "b"])
|
||||
matcher.add("4", None, [{"OP": "?"}, {"OP": "?"}])
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 3
|
|
@ -1,31 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...attrs import ENT_IOB, ENT_TYPE
|
||||
from ...tokens import Doc
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_issue3012(en_vocab):
|
||||
"""Test that the is_tagged attribute doesn't get overwritten when we from_array
|
||||
without tag information."""
|
||||
words = ["This", "is", "10", "%", "."]
|
||||
tags = ["DT", "VBZ", "CD", "NN", "."]
|
||||
pos = ["DET", "VERB", "NUM", "NOUN", "PUNCT"]
|
||||
ents = [(2, 4, "PERCENT")]
|
||||
doc = get_doc(en_vocab, words=words, tags=tags, pos=pos, ents=ents)
|
||||
assert doc.is_tagged
|
||||
|
||||
expected = ("10", "NUM", "CD", "PERCENT")
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
header = [ENT_IOB, ENT_TYPE]
|
||||
ent_array = doc.to_array(header)
|
||||
doc.from_array(header, ent_array)
|
||||
|
||||
assert (doc[2].text, doc[2].pos_, doc[2].tag_, doc[2].ent_type_) == expected
|
||||
|
||||
# serializing then deserializing
|
||||
doc_bytes = doc.to_bytes()
|
||||
doc2 = Doc(en_vocab).from_bytes(doc_bytes)
|
||||
assert (doc2[2].text, doc2[2].pos_, doc2[2].tag_, doc2[2].ent_type_) == expected
|
|
@ -1,15 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.tokens import Doc
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
|
||||
def test_issue3199():
|
||||
"""Test that Span.noun_chunks works correctly if no noun chunks iterator
|
||||
is available. To make this test future-proof, we're constructing a Doc
|
||||
with a new Vocab here and setting is_parsed to make sure the noun chunks run.
|
||||
"""
|
||||
doc = Doc(Vocab(), words=["This", "is", "a", "sentence"])
|
||||
doc.is_parsed = True
|
||||
assert list(doc[0:3].noun_chunks) == []
|
|
@ -1,23 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
def test_issue3209():
|
||||
"""Test issue that occurred in spaCy nightly where NER labels were being
|
||||
mapped to classes incorrectly after loading the model, when the labels
|
||||
were added using ner.add_label().
|
||||
"""
|
||||
nlp = English()
|
||||
ner = nlp.create_pipe("ner")
|
||||
nlp.add_pipe(ner)
|
||||
|
||||
ner.add_label("ANIMAL")
|
||||
nlp.begin_training()
|
||||
move_names = ["O", "B-ANIMAL", "I-ANIMAL", "L-ANIMAL", "U-ANIMAL"]
|
||||
assert ner.move_names == move_names
|
||||
nlp2 = English()
|
||||
nlp2.add_pipe(nlp2.create_pipe("ner"))
|
||||
nlp2.from_bytes(nlp.to_bytes())
|
||||
assert nlp2.get_pipe("ner").move_names == move_names
|
|
@ -1,27 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.lang.en import English
|
||||
from spacy.compat import pickle
|
||||
|
||||
|
||||
def test_issue3248_1():
|
||||
"""Test that the PhraseMatcher correctly reports its number of rules, not
|
||||
total number of patterns."""
|
||||
nlp = English()
|
||||
matcher = PhraseMatcher(nlp.vocab)
|
||||
matcher.add("TEST1", None, nlp("a"), nlp("b"), nlp("c"))
|
||||
matcher.add("TEST2", None, nlp("d"))
|
||||
assert len(matcher) == 2
|
||||
|
||||
|
||||
def test_issue3248_2():
|
||||
"""Test that the PhraseMatcher can be pickled correctly."""
|
||||
nlp = English()
|
||||
matcher = PhraseMatcher(nlp.vocab)
|
||||
matcher.add("TEST1", None, nlp("a"), nlp("b"), nlp("c"))
|
||||
matcher.add("TEST2", None, nlp("d"))
|
||||
data = pickle.dumps(matcher)
|
||||
new_matcher = pickle.loads(data)
|
||||
assert len(new_matcher) == len(matcher)
|
|
@ -1,11 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
def test_issue3277(es_tokenizer):
|
||||
"""Test that hyphens are split correctly as prefixes."""
|
||||
doc = es_tokenizer("—Yo me llamo... –murmuró el niño– Emilio Sánchez Pérez.")
|
||||
assert len(doc) == 14
|
||||
assert doc[0].text == "\u2014"
|
||||
assert doc[5].text == "\u2013"
|
||||
assert doc[9].text == "\u2013"
|
|
@ -1,18 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import numpy
|
||||
from spacy import displacy
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
|
||||
def test_issue3288(en_vocab):
|
||||
"""Test that retokenization works correctly via displaCy when punctuation
|
||||
is merged onto the preceeding token and tensor is resized."""
|
||||
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
|
||||
heads = [1, 0, -1, 1, 0, 1, -2, -3]
|
||||
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
|
||||
doc = get_doc(en_vocab, words=words, heads=heads, deps=deps)
|
||||
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
|
||||
displacy.render(doc)
|
|
@ -1,15 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
def test_issue3289():
|
||||
"""Test that Language.to_bytes handles serializing a pipeline component
|
||||
with an uninitialized model."""
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("textcat"))
|
||||
bytes_data = nlp.to_bytes()
|
||||
new_nlp = English()
|
||||
new_nlp.add_pipe(nlp.create_pipe("textcat"))
|
||||
new_nlp.from_bytes(bytes_data)
|
|
@ -1,19 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.matcher import Matcher
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_issue3328(en_vocab):
|
||||
doc = Doc(en_vocab, words=["Hello", ",", "how", "are", "you", "doing", "?"])
|
||||
matcher = Matcher(en_vocab)
|
||||
patterns = [
|
||||
[{"LOWER": {"IN": ["hello", "how"]}}],
|
||||
[{"LOWER": {"IN": ["you", "doing"]}}],
|
||||
]
|
||||
matcher.add("TEST", None, *patterns)
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 4
|
||||
matched_texts = [doc[start:end].text for _, start, end in matches]
|
||||
assert matched_texts == ["Hello", "how", "you", "doing"]
|
|
@ -1,21 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_issue3331(en_vocab):
|
||||
"""Test that duplicate patterns for different rules result in multiple
|
||||
matches, one per rule.
|
||||
"""
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
matcher.add("A", None, Doc(en_vocab, words=["Barack", "Obama"]))
|
||||
matcher.add("B", None, Doc(en_vocab, words=["Barack", "Obama"]))
|
||||
doc = Doc(en_vocab, words=["Barack", "Obama", "lifts", "America"])
|
||||
matches = matcher(doc)
|
||||
assert len(matches) == 2
|
||||
match_ids = [en_vocab.strings[matches[0][0]], en_vocab.strings[matches[1][0]]]
|
||||
assert sorted(match_ids) == ["A", "B"]
|
|
@ -1,26 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
from spacy.pipeline import EntityRuler, EntityRecognizer
|
||||
|
||||
|
||||
def test_issue3345():
|
||||
"""Test case where preset entity crosses sentence boundary."""
|
||||
nlp = English()
|
||||
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
|
||||
doc[4].is_sent_start = True
|
||||
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
|
||||
ner = EntityRecognizer(doc.vocab)
|
||||
# Add the OUT action. I wouldn't have thought this would be necessary...
|
||||
ner.moves.add_action(5, "")
|
||||
ner.add_label("GPE")
|
||||
doc = ruler(doc)
|
||||
# Get into the state just before "New"
|
||||
state = ner.moves.init_batch([doc])[0]
|
||||
ner.moves.apply_transition(state, "O")
|
||||
ner.moves.apply_transition(state, "O")
|
||||
ner.moves.apply_transition(state, "O")
|
||||
# Check that B-GPE is valid.
|
||||
assert ner.moves.is_valid(state, "B-GPE")
|
|
@ -1,72 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import re
|
||||
from spacy import compat
|
||||
|
||||
prefix_search = (
|
||||
b"^\xc2\xa7|^%|^=|^\xe2\x80\x94|^\xe2\x80\x93|^\\+(?![0-9])"
|
||||
b"|^\xe2\x80\xa6|^\xe2\x80\xa6\xe2\x80\xa6|^,|^:|^;|^\\!|^\\?"
|
||||
b"|^\xc2\xbf|^\xd8\x9f|^\xc2\xa1|^\\(|^\\)|^\\[|^\\]|^\\{|^\\}"
|
||||
b"|^<|^>|^_|^#|^\\*|^&|^\xe3\x80\x82|^\xef\xbc\x9f|^\xef\xbc\x81|"
|
||||
b"^\xef\xbc\x8c|^\xe3\x80\x81|^\xef\xbc\x9b|^\xef\xbc\x9a|"
|
||||
b"^\xef\xbd\x9e|^\xc2\xb7|^\xe0\xa5\xa4|^\xd8\x8c|^\xd8\x9b|"
|
||||
b"^\xd9\xaa|^\\.\\.+|^\xe2\x80\xa6|^\\'|^\"|^\xe2\x80\x9d|"
|
||||
b"^\xe2\x80\x9c|^`|^\xe2\x80\x98|^\xc2\xb4|^\xe2\x80\x99|"
|
||||
b"^\xe2\x80\x9a|^,|^\xe2\x80\x9e|^\xc2\xbb|^\xc2\xab|^\xe3\x80\x8c|"
|
||||
b"^\xe3\x80\x8d|^\xe3\x80\x8e|^\xe3\x80\x8f|^\xef\xbc\x88|"
|
||||
b"^\xef\xbc\x89|^\xe3\x80\x94|^\xe3\x80\x95|^\xe3\x80\x90|"
|
||||
b"^\xe3\x80\x91|^\xe3\x80\x8a|^\xe3\x80\x8b|^\xe3\x80\x88|"
|
||||
b"^\xe3\x80\x89|^\\$|^\xc2\xa3|^\xe2\x82\xac|^\xc2\xa5|^\xe0\xb8\xbf|"
|
||||
b"^US\\$|^C\\$|^A\\$|^\xe2\x82\xbd|^\xef\xb7\xbc|^\xe2\x82\xb4|"
|
||||
b"^[\\u00A6\\u00A9\\u00AE\\u00B0\\u0482\\u058D\\u058E\\u060E\\u060F"
|
||||
b"\\u06DE\\u06E9\\u06FD\\u06FE\\u07F6\\u09FA\\u0B70\\u0BF3-\\u0BF8"
|
||||
b"\\u0BFA\\u0C7F\\u0D4F\\u0D79\\u0F01-\\u0F03\\u0F13\\u0F15-\\u0F17"
|
||||
b"\\u0F1A-\\u0F1F\\u0F34\\u0F36\\u0F38\\u0FBE-\\u0FC5\\u0FC7-\\u0FCC"
|
||||
b"\\u0FCE\\u0FCF\\u0FD5-\\u0FD8\\u109E\\u109F\\u1390-\\u1399\\u1940"
|
||||
b"\\u19DE-\\u19FF\\u1B61-\\u1B6A\\u1B74-\\u1B7C\\u2100\\u2101\\u2103"
|
||||
b"-\\u2106\\u2108\\u2109\\u2114\\u2116\\u2117\\u211E-\\u2123\\u2125"
|
||||
b"\\u2127\\u2129\\u212E\\u213A\\u213B\\u214A\\u214C\\u214D\\u214F"
|
||||
b"\\u218A\\u218B\\u2195-\\u2199\\u219C-\\u219F\\u21A1\\u21A2\\u21A4"
|
||||
b"\\u21A5\\u21A7-\\u21AD\\u21AF-\\u21CD\\u21D0\\u21D1\\u21D3\\u21D5"
|
||||
b"-\\u21F3\\u2300-\\u2307\\u230C-\\u231F\\u2322-\\u2328\\u232B"
|
||||
b"-\\u237B\\u237D-\\u239A\\u23B4-\\u23DB\\u23E2-\\u2426\\u2440"
|
||||
b"-\\u244A\\u249C-\\u24E9\\u2500-\\u25B6\\u25B8-\\u25C0\\u25C2"
|
||||
b"-\\u25F7\\u2600-\\u266E\\u2670-\\u2767\\u2794-\\u27BF\\u2800"
|
||||
b"-\\u28FF\\u2B00-\\u2B2F\\u2B45\\u2B46\\u2B4D-\\u2B73\\u2B76"
|
||||
b"-\\u2B95\\u2B98-\\u2BC8\\u2BCA-\\u2BFE\\u2CE5-\\u2CEA\\u2E80"
|
||||
b"-\\u2E99\\u2E9B-\\u2EF3\\u2F00-\\u2FD5\\u2FF0-\\u2FFB\\u3004"
|
||||
b"\\u3012\\u3013\\u3020\\u3036\\u3037\\u303E\\u303F\\u3190\\u3191"
|
||||
b"\\u3196-\\u319F\\u31C0-\\u31E3\\u3200-\\u321E\\u322A-\\u3247\\u3250"
|
||||
b"\\u3260-\\u327F\\u328A-\\u32B0\\u32C0-\\u32FE\\u3300-\\u33FF\\u4DC0"
|
||||
b"-\\u4DFF\\uA490-\\uA4C6\\uA828-\\uA82B\\uA836\\uA837\\uA839\\uAA77"
|
||||
b"-\\uAA79\\uFDFD\\uFFE4\\uFFE8\\uFFED\\uFFEE\\uFFFC\\uFFFD\\U00010137"
|
||||
b"-\\U0001013F\\U00010179-\\U00010189\\U0001018C-\\U0001018E"
|
||||
b"\\U00010190-\\U0001019B\\U000101A0\\U000101D0-\\U000101FC\\U00010877"
|
||||
b"\\U00010878\\U00010AC8\\U0001173F\\U00016B3C-\\U00016B3F\\U00016B45"
|
||||
b"\\U0001BC9C\\U0001D000-\\U0001D0F5\\U0001D100-\\U0001D126\\U0001D129"
|
||||
b"-\\U0001D164\\U0001D16A-\\U0001D16C\\U0001D183\\U0001D184\\U0001D18C"
|
||||
b"-\\U0001D1A9\\U0001D1AE-\\U0001D1E8\\U0001D200-\\U0001D241\\U0001D245"
|
||||
b"\\U0001D300-\\U0001D356\\U0001D800-\\U0001D9FF\\U0001DA37-\\U0001DA3A"
|
||||
b"\\U0001DA6D-\\U0001DA74\\U0001DA76-\\U0001DA83\\U0001DA85\\U0001DA86"
|
||||
b"\\U0001ECAC\\U0001F000-\\U0001F02B\\U0001F030-\\U0001F093\\U0001F0A0"
|
||||
b"-\\U0001F0AE\\U0001F0B1-\\U0001F0BF\\U0001F0C1-\\U0001F0CF\\U0001F0D1"
|
||||
b"-\\U0001F0F5\\U0001F110-\\U0001F16B\\U0001F170-\\U0001F1AC\\U0001F1E6"
|
||||
b"-\\U0001F202\\U0001F210-\\U0001F23B\\U0001F240-\\U0001F248\\U0001F250"
|
||||
b"\\U0001F251\\U0001F260-\\U0001F265\\U0001F300-\\U0001F3FA\\U0001F400"
|
||||
b"-\\U0001F6D4\\U0001F6E0-\\U0001F6EC\\U0001F6F0-\\U0001F6F9\\U0001F700"
|
||||
b"-\\U0001F773\\U0001F780-\\U0001F7D8\\U0001F800-\\U0001F80B\\U0001F810"
|
||||
b"-\\U0001F847\\U0001F850-\\U0001F859\\U0001F860-\\U0001F887\\U0001F890"
|
||||
b"-\\U0001F8AD\\U0001F900-\\U0001F90B\\U0001F910-\\U0001F93E\\U0001F940"
|
||||
b"-\\U0001F970\\U0001F973-\\U0001F976\\U0001F97A\\U0001F97C-\\U0001F9A2"
|
||||
b"\\U0001F9B0-\\U0001F9B9\\U0001F9C0-\\U0001F9C2\\U0001F9D0-\\U0001F9FF"
|
||||
b"\\U0001FA60-\\U0001FA6D]"
|
||||
)
|
||||
|
||||
|
||||
if compat.is_python2:
|
||||
# If we have this test in Python 3, pytest chokes, as it can't print the
|
||||
# string above in the xpass message.
|
||||
def test_issue3356():
|
||||
pattern = re.compile(compat.unescape_unicode(prefix_search.decode("utf8")))
|
||||
assert not pattern.search("hello")
|
|
@ -1,21 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.lang.en import English
|
||||
from spacy.matcher import Matcher, PhraseMatcher
|
||||
|
||||
|
||||
def test_issue3410():
|
||||
texts = ["Hello world", "This is a test"]
|
||||
nlp = English()
|
||||
matcher = Matcher(nlp.vocab)
|
||||
phrasematcher = PhraseMatcher(nlp.vocab)
|
||||
with pytest.deprecated_call():
|
||||
docs = list(nlp.pipe(texts, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
docs = list(nlp.tokenizer.pipe(texts, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
list(matcher.pipe(docs, n_threads=4))
|
||||
with pytest.deprecated_call():
|
||||
list(phrasematcher.pipe(docs, n_threads=4))
|
|
@ -1,14 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.util import decaying
|
||||
|
||||
|
||||
def test_issue3447():
|
||||
sizes = decaying(10.0, 1.0, 0.5)
|
||||
size = next(sizes)
|
||||
assert size == 10.0
|
||||
size = next(sizes)
|
||||
assert size == 10.0 - 0.5
|
||||
size = next(sizes)
|
||||
assert size == 10.0 - 0.5 - 0.5
|
|
@ -1,21 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
@pytest.mark.xfail(reason="default suffix rules avoid one upper-case letter before dot")
|
||||
def test_issue3449():
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
text1 = "He gave the ball to I. Do you want to go to the movies with I?"
|
||||
text2 = "He gave the ball to I. Do you want to go to the movies with I?"
|
||||
text3 = "He gave the ball to I.\nDo you want to go to the movies with I?"
|
||||
t1 = nlp(text1)
|
||||
t2 = nlp(text2)
|
||||
t3 = nlp(text3)
|
||||
assert t1[5].text == "I"
|
||||
assert t2[5].text == "I"
|
||||
assert t3[5].text == "I"
|
|
@ -1,21 +0,0 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
def test_issue3468():
|
||||
"""Test that sentence boundaries are set correctly so Doc.is_sentenced can
|
||||
be restored after serialization."""
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||||
doc = nlp("Hello world")
|
||||
assert doc[0].is_sent_start
|
||||
assert doc.is_sentenced
|
||||
assert len(list(doc.sents)) == 1
|
||||
doc_bytes = doc.to_bytes()
|
||||
new_doc = Doc(nlp.vocab).from_bytes(doc_bytes)
|
||||
assert new_doc[0].is_sent_start
|
||||
assert new_doc.is_sentenced
|
||||
assert len(list(new_doc.sents)) == 1
|
88
spacy/tests/regression/test_issue3526.py
Normal file
88
spacy/tests/regression/test_issue3526.py
Normal file
|
@ -0,0 +1,88 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
from spacy.tokens import Span
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import EntityRuler
|
||||
from spacy import load
|
||||
import srsly
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def patterns():
|
||||
return [
|
||||
{"label": "HELLO", "pattern": "hello world"},
|
||||
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
|
||||
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
|
||||
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
|
||||
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def add_ent():
|
||||
def add_ent_component(doc):
|
||||
doc.ents = [Span(doc, 0, 3, label=doc.vocab.strings["ORG"])]
|
||||
return doc
|
||||
|
||||
return add_ent_component
|
||||
|
||||
|
||||
def test_entity_ruler_existing_overwrite_serialize_bytes(patterns, en_vocab):
|
||||
nlp = Language(vocab=en_vocab)
|
||||
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
||||
ruler_bytes = ruler.to_bytes()
|
||||
assert len(ruler) == len(patterns)
|
||||
assert len(ruler.labels) == 4
|
||||
assert ruler.overwrite
|
||||
new_ruler = EntityRuler(nlp)
|
||||
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
||||
assert len(new_ruler) == len(ruler)
|
||||
assert len(new_ruler.labels) == 4
|
||||
assert new_ruler.overwrite == ruler.overwrite
|
||||
assert new_ruler.ent_id_sep == ruler.ent_id_sep
|
||||
|
||||
|
||||
def test_entity_ruler_existing_bytes_old_format_safe(patterns, en_vocab):
|
||||
nlp = Language(vocab=en_vocab)
|
||||
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
||||
bytes_old_style = srsly.msgpack_dumps(ruler.patterns)
|
||||
new_ruler = EntityRuler(nlp)
|
||||
new_ruler = new_ruler.from_bytes(bytes_old_style)
|
||||
assert len(new_ruler) == len(ruler)
|
||||
for pattern in ruler.patterns:
|
||||
assert pattern in new_ruler.patterns
|
||||
assert new_ruler.overwrite is not ruler.overwrite
|
||||
|
||||
|
||||
def test_entity_ruler_from_disk_old_format_safe(patterns, en_vocab):
|
||||
nlp = Language(vocab=en_vocab)
|
||||
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
||||
with make_tempdir() as tmpdir:
|
||||
out_file = tmpdir / "entity_ruler"
|
||||
srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns)
|
||||
new_ruler = EntityRuler(nlp).from_disk(out_file)
|
||||
for pattern in ruler.patterns:
|
||||
assert pattern in new_ruler.patterns
|
||||
assert len(new_ruler) == len(ruler)
|
||||
assert new_ruler.overwrite is not ruler.overwrite
|
||||
|
||||
|
||||
def test_entity_ruler_in_pipeline_from_issue(patterns, en_vocab):
|
||||
nlp = Language(vocab=en_vocab)
|
||||
ruler = EntityRuler(nlp, overwrite_ents=True)
|
||||
|
||||
ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
|
||||
nlp.add_pipe(ruler)
|
||||
with make_tempdir() as tmpdir:
|
||||
nlp.to_disk(tmpdir)
|
||||
ruler = nlp.get_pipe("entity_ruler")
|
||||
assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
|
||||
assert ruler.overwrite is True
|
||||
nlp2 = load(tmpdir)
|
||||
new_ruler = nlp2.get_pipe("entity_ruler")
|
||||
assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
|
||||
assert new_ruler.overwrite is True
|
51
spacy/tests/regression/test_issue3611.py
Normal file
51
spacy/tests/regression/test_issue3611.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
import spacy
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
||||
def test_issue3611():
|
||||
""" Test whether adding n-grams in the textcat works even when n > token length of some docs """
|
||||
unique_classes = ["offensive", "inoffensive"]
|
||||
x_train = ["This is an offensive text",
|
||||
"This is the second offensive text",
|
||||
"inoff"]
|
||||
y_train = ["offensive", "offensive", "inoffensive"]
|
||||
|
||||
# preparing the data
|
||||
pos_cats = list()
|
||||
for train_instance in y_train:
|
||||
pos_cats.append({label: label == train_instance for label in unique_classes})
|
||||
train_data = list(zip(x_train, [{'cats': cats} for cats in pos_cats]))
|
||||
|
||||
# set up the spacy model with a text categorizer component
|
||||
nlp = spacy.blank('en')
|
||||
|
||||
textcat = nlp.create_pipe(
|
||||
"textcat",
|
||||
config={
|
||||
"exclusive_classes": True,
|
||||
"architecture": "bow",
|
||||
"ngram_size": 2
|
||||
}
|
||||
)
|
||||
|
||||
for label in unique_classes:
|
||||
textcat.add_label(label)
|
||||
nlp.add_pipe(textcat, last=True)
|
||||
|
||||
# training the network
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
|
||||
with nlp.disable_pipes(*other_pipes):
|
||||
optimizer = nlp.begin_training()
|
||||
for i in range(3):
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
||||
|
||||
for batch in batches:
|
||||
texts, annotations = zip(*batch)
|
||||
nlp.update(docs=texts, golds=annotations, sgd=optimizer, drop=0.1, losses=losses)
|
||||
|
||||
|
10
spacy/tests/regression/test_issue3625.py
Normal file
10
spacy/tests/regression/test_issue3625.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.hi import Hindi
|
||||
|
||||
def test_issue3625():
|
||||
"""Test that default punctuation rules applies to hindi unicode characters"""
|
||||
nlp = Hindi()
|
||||
doc = nlp(u"hi. how हुए. होटल, होटल")
|
||||
assert [token.text for token in doc] == ['hi', '.', 'how', 'हुए', '.', 'होटल', ',', 'होटल']
|
|
@ -6,7 +6,6 @@ from spacy.matcher import Matcher
|
|||
from spacy.tokens import Doc
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
def test_issue3839(en_vocab):
|
||||
"""Test that match IDs returned by the matcher are correct, are in the string """
|
||||
doc = Doc(en_vocab, words=["terrific", "group", "of", "people"])
|
||||
|
|
31
spacy/tests/regression/test_issue3869.py
Normal file
31
spacy/tests/regression/test_issue3869.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
from spacy.attrs import IS_ALPHA
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence",
|
||||
[
|
||||
'The story was to the effect that a young American student recently called on Professor Christlieb with a letter of introduction.',
|
||||
'The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale\'s #1.',
|
||||
'The next month Barry Siddall joined Stoke City on a free transfer, after Chris Pearce had established himself as the Vale\'s number one',
|
||||
'Indeed, making the one who remains do all the work has installed him into a position of such insolent tyranny, it will take a month at least to reduce him to his proper proportions.',
|
||||
"It was a missed assignment, but it shouldn't have resulted in a turnover ..."
|
||||
],
|
||||
)
|
||||
def test_issue3869(sentence):
|
||||
"""Test that the Doc's count_by function works consistently"""
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
|
||||
count = 0
|
||||
for token in doc:
|
||||
count += token.is_alpha
|
||||
|
||||
assert count == doc.count_by(IS_ALPHA).get(1, 0)
|
||||
|
||||
|
22
spacy/tests/regression/test_issue3880.py
Normal file
22
spacy/tests/regression/test_issue3880.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
def test_issue3880():
|
||||
"""Test that `nlp.pipe()` works when an empty string ends the batch.
|
||||
|
||||
Fixed in v7.0.5 of Thinc.
|
||||
"""
|
||||
texts = ["hello", "world", "", ""]
|
||||
nlp = English()
|
||||
nlp.add_pipe(nlp.create_pipe("parser"))
|
||||
nlp.add_pipe(nlp.create_pipe("ner"))
|
||||
nlp.add_pipe(nlp.create_pipe("tagger"))
|
||||
nlp.get_pipe("parser").add_label("dep")
|
||||
nlp.get_pipe("ner").add_label("PERSON")
|
||||
nlp.get_pipe("tagger").add_label("NN")
|
||||
nlp.begin_training()
|
||||
for doc in nlp.pipe(texts):
|
||||
pass
|
74
spacy/tests/serialize/test_serialize_kb.py
Normal file
74
spacy/tests/serialize/test_serialize_kb.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..util import make_tempdir
|
||||
from ...util import ensure_path
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
|
||||
def test_serialize_kb_disk(en_vocab):
|
||||
# baseline assertions
|
||||
kb1 = _get_dummy_kb(en_vocab)
|
||||
_check_kb(kb1)
|
||||
|
||||
# dumping to file & loading back in
|
||||
with make_tempdir() as d:
|
||||
dir_path = ensure_path(d)
|
||||
if not dir_path.exists():
|
||||
dir_path.mkdir()
|
||||
file_path = dir_path / "kb"
|
||||
kb1.dump(str(file_path))
|
||||
|
||||
kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3)
|
||||
kb2.load_bulk(str(file_path))
|
||||
|
||||
# final assertions
|
||||
_check_kb(kb2)
|
||||
|
||||
|
||||
def _get_dummy_kb(vocab):
|
||||
kb = KnowledgeBase(vocab=vocab, entity_vector_length=3)
|
||||
|
||||
kb.add_entity(entity='Q53', prob=0.33, entity_vector=[0, 5, 3])
|
||||
kb.add_entity(entity='Q17', prob=0.2, entity_vector=[7, 1, 0])
|
||||
kb.add_entity(entity='Q007', prob=0.7, entity_vector=[0, 0, 7])
|
||||
kb.add_entity(entity='Q44', prob=0.4, entity_vector=[4, 4, 4])
|
||||
|
||||
kb.add_alias(alias='double07', entities=['Q17', 'Q007'], probabilities=[0.1, 0.9])
|
||||
kb.add_alias(alias='guy', entities=['Q53', 'Q007', 'Q17', 'Q44'], probabilities=[0.3, 0.3, 0.2, 0.1])
|
||||
kb.add_alias(alias='random', entities=['Q007'], probabilities=[1.0])
|
||||
|
||||
return kb
|
||||
|
||||
|
||||
def _check_kb(kb):
|
||||
# check entities
|
||||
assert kb.get_size_entities() == 4
|
||||
for entity_string in ['Q53', 'Q17', 'Q007', 'Q44']:
|
||||
assert entity_string in kb.get_entity_strings()
|
||||
for entity_string in ['', 'Q0']:
|
||||
assert entity_string not in kb.get_entity_strings()
|
||||
|
||||
# check aliases
|
||||
assert kb.get_size_aliases() == 3
|
||||
for alias_string in ['double07', 'guy', 'random']:
|
||||
assert alias_string in kb.get_alias_strings()
|
||||
for alias_string in ['nothingness', '', 'randomnoise']:
|
||||
assert alias_string not in kb.get_alias_strings()
|
||||
|
||||
# check candidates & probabilities
|
||||
candidates = sorted(kb.get_candidates('double07'), key=lambda x: x.entity_)
|
||||
assert len(candidates) == 2
|
||||
|
||||
assert candidates[0].entity_ == 'Q007'
|
||||
assert 0.6999 < candidates[0].entity_freq < 0.701
|
||||
assert candidates[0].entity_vector == [0, 0, 7]
|
||||
assert candidates[0].alias_ == 'double07'
|
||||
assert 0.899 < candidates[0].prior_prob < 0.901
|
||||
|
||||
assert candidates[1].entity_ == 'Q17'
|
||||
assert 0.199 < candidates[1].entity_freq < 0.201
|
||||
assert candidates[1].entity_vector == [7, 1, 0]
|
||||
assert candidates[1].alias_ == 'double07'
|
||||
assert 0.099 < candidates[1].prior_prob < 0.101
|
|
@ -11,29 +11,27 @@ from ..tokens import Doc
|
|||
from ..attrs import SPACY, ORTH
|
||||
|
||||
|
||||
class Binder(object):
|
||||
class DocBox(object):
|
||||
"""Serialize analyses from a collection of doc objects."""
|
||||
|
||||
def __init__(self, attrs=None):
|
||||
"""Create a Binder object, to hold serialized annotations.
|
||||
def __init__(self, attrs=None, store_user_data=False):
|
||||
"""Create a DocBox object, to hold serialized annotations.
|
||||
|
||||
attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
|
||||
always serialized, so they're not required. Defaults to None.
|
||||
"""
|
||||
attrs = attrs or []
|
||||
self.attrs = list(attrs)
|
||||
# Ensure ORTH is always attrs[0]
|
||||
if ORTH in self.attrs:
|
||||
self.attrs.pop(ORTH)
|
||||
if SPACY in self.attrs:
|
||||
self.attrs.pop(SPACY)
|
||||
self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
|
||||
self.attrs.insert(0, ORTH)
|
||||
self.tokens = []
|
||||
self.spaces = []
|
||||
self.user_data = []
|
||||
self.strings = set()
|
||||
self.store_user_data = store_user_data
|
||||
|
||||
def add(self, doc):
|
||||
"""Add a doc's annotations to the binder for serialization."""
|
||||
"""Add a doc's annotations to the DocBox for serialization."""
|
||||
array = doc.to_array(self.attrs)
|
||||
if len(array.shape) == 1:
|
||||
array = array.reshape((array.shape[0], 1))
|
||||
|
@ -43,27 +41,35 @@ class Binder(object):
|
|||
spaces = spaces.reshape((spaces.shape[0], 1))
|
||||
self.spaces.append(numpy.asarray(spaces, dtype=bool))
|
||||
self.strings.update(w.text for w in doc)
|
||||
if self.store_user_data:
|
||||
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
|
||||
|
||||
def get_docs(self, vocab):
|
||||
"""Recover Doc objects from the annotations, using the given vocab."""
|
||||
for string in self.strings:
|
||||
vocab[string]
|
||||
orth_col = self.attrs.index(ORTH)
|
||||
for tokens, spaces in zip(self.tokens, self.spaces):
|
||||
for i in range(len(self.tokens)):
|
||||
tokens = self.tokens[i]
|
||||
spaces = self.spaces[i]
|
||||
words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
|
||||
doc = Doc(vocab, words=words, spaces=spaces)
|
||||
doc = doc.from_array(self.attrs, tokens)
|
||||
if self.store_user_data:
|
||||
doc.user_data.update(srsly.msgpack_loads(self.user_data[i]))
|
||||
yield doc
|
||||
|
||||
def merge(self, other):
|
||||
"""Extend the annotations of this binder with the annotations from another."""
|
||||
"""Extend the annotations of this DocBox with the annotations from another."""
|
||||
assert self.attrs == other.attrs
|
||||
self.tokens.extend(other.tokens)
|
||||
self.spaces.extend(other.spaces)
|
||||
self.strings.update(other.strings)
|
||||
if self.store_user_data:
|
||||
self.user_data.extend(other.user_data)
|
||||
|
||||
def to_bytes(self):
|
||||
"""Serialize the binder's annotations into a byte string."""
|
||||
"""Serialize the DocBox's annotations into a byte string."""
|
||||
for tokens in self.tokens:
|
||||
assert len(tokens.shape) == 2, tokens.shape
|
||||
lengths = [len(tokens) for tokens in self.tokens]
|
||||
|
@ -74,10 +80,12 @@ class Binder(object):
|
|||
"lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
|
||||
"strings": list(self.strings),
|
||||
}
|
||||
if self.store_user_data:
|
||||
msg["user_data"] = self.user_data
|
||||
return gzip.compress(srsly.msgpack_dumps(msg))
|
||||
|
||||
def from_bytes(self, string):
|
||||
"""Deserialize the binder's annotations from a byte string."""
|
||||
"""Deserialize the DocBox's annotations from a byte string."""
|
||||
msg = srsly.msgpack_loads(gzip.decompress(string))
|
||||
self.attrs = msg["attrs"]
|
||||
self.strings = set(msg["strings"])
|
||||
|
@ -89,29 +97,38 @@ class Binder(object):
|
|||
flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
|
||||
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
|
||||
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
|
||||
if self.store_user_data and "user_data" in msg:
|
||||
self.user_data = list(msg["user_data"])
|
||||
for tokens in self.tokens:
|
||||
assert len(tokens.shape) == 2, tokens.shape
|
||||
return self
|
||||
|
||||
|
||||
def merge_bytes(binder_strings):
|
||||
"""Concatenate multiple serialized binders into one byte string."""
|
||||
output = None
|
||||
for byte_string in binder_strings:
|
||||
binder = Binder().from_bytes(byte_string)
|
||||
if output is None:
|
||||
output = binder
|
||||
else:
|
||||
output.merge(binder)
|
||||
return output.to_bytes()
|
||||
def merge_boxes(boxes):
|
||||
merged = None
|
||||
for byte_string in boxes:
|
||||
if byte_string is not None:
|
||||
box = DocBox(store_user_data=True).from_bytes(byte_string)
|
||||
if merged is None:
|
||||
merged = box
|
||||
else:
|
||||
merged.merge(box)
|
||||
if merged is not None:
|
||||
return merged.to_bytes()
|
||||
else:
|
||||
return b""
|
||||
|
||||
|
||||
def pickle_binder(binder):
|
||||
return (unpickle_binder, (binder.to_bytes(),))
|
||||
def pickle_box(box):
|
||||
return (unpickle_box, (box.to_bytes(),))
|
||||
|
||||
|
||||
def unpickle_binder(byte_string):
|
||||
return Binder().from_bytes(byte_string)
|
||||
def unpickle_box(byte_string):
|
||||
return DocBox().from_bytes(byte_string)
|
||||
|
||||
|
||||
copy_reg.pickle(Binder, pickle_binder, unpickle_binder)
|
||||
copy_reg.pickle(DocBox, pickle_box, unpickle_box)
|
||||
# Compatibility, as we had named it this previously.
|
||||
Binder = DocBox
|
||||
|
||||
__all__ = ["DocBox"]
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from cymem.cymem cimport Pool
|
||||
cimport numpy as np
|
||||
from preshed.counter cimport PreshCounter
|
||||
|
||||
from ..vocab cimport Vocab
|
||||
from ..structs cimport TokenC, LexemeC
|
||||
|
|
|
@ -9,6 +9,7 @@ cimport cython
|
|||
cimport numpy as np
|
||||
from libc.string cimport memcpy, memset
|
||||
from libc.math cimport sqrt
|
||||
from collections import Counter
|
||||
|
||||
import numpy
|
||||
import numpy.linalg
|
||||
|
@ -22,7 +23,7 @@ from ..lexeme cimport Lexeme, EMPTY_LEXEME
|
|||
from ..typedefs cimport attr_t, flags_t
|
||||
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, CLUSTER
|
||||
from ..attrs cimport LENGTH, POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB
|
||||
from ..attrs cimport ENT_TYPE, SENT_START, attr_id_t
|
||||
from ..attrs cimport ENT_TYPE, ENT_KB_ID, SENT_START, attr_id_t
|
||||
from ..parts_of_speech cimport CCONJ, PUNCT, NOUN, univ_pos_t
|
||||
|
||||
from ..attrs import intify_attrs, IDS
|
||||
|
@ -64,6 +65,8 @@ cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
|
|||
return token.ent_iob
|
||||
elif feat_name == ENT_TYPE:
|
||||
return token.ent_type
|
||||
elif feat_name == ENT_KB_ID:
|
||||
return token.ent_kb_id
|
||||
else:
|
||||
return Lexeme.get_struct_attr(token.lex, feat_name)
|
||||
|
||||
|
@ -85,13 +88,14 @@ cdef class Doc:
|
|||
Python-level `Token` and `Span` objects are views of this array, i.e.
|
||||
they don't own the data themselves.
|
||||
|
||||
EXAMPLE: Construction 1
|
||||
EXAMPLE:
|
||||
Construction 1
|
||||
>>> doc = nlp(u'Some text')
|
||||
|
||||
Construction 2
|
||||
>>> from spacy.tokens import Doc
|
||||
>>> doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
|
||||
spaces=[True, False, False])
|
||||
>>> spaces=[True, False, False])
|
||||
|
||||
DOCS: https://spacy.io/api/doc
|
||||
"""
|
||||
|
@ -237,6 +241,8 @@ cdef class Doc:
|
|||
return True
|
||||
if self.is_parsed:
|
||||
return True
|
||||
if len(self) < 2:
|
||||
return True
|
||||
for i in range(1, self.length):
|
||||
if self.c[i].sent_start == -1 or self.c[i].sent_start == 1:
|
||||
return True
|
||||
|
@ -248,6 +254,8 @@ cdef class Doc:
|
|||
*any* of the tokens has a named entity tag set (even if the others are
|
||||
uknown values).
|
||||
"""
|
||||
if len(self) == 0:
|
||||
return True
|
||||
for i in range(self.length):
|
||||
if self.c[i].ent_iob != 0:
|
||||
return True
|
||||
|
@ -690,7 +698,7 @@ cdef class Doc:
|
|||
# Handle 1d case
|
||||
return output if len(attr_ids) >= 2 else output.reshape((self.length,))
|
||||
|
||||
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
|
||||
def count_by(self, attr_id_t attr_id, exclude=None, object counts=None):
|
||||
"""Count the frequencies of a given attribute. Produces a dict of
|
||||
`{attribute (int): count (ints)}` frequencies, keyed by the values of
|
||||
the given attribute ID.
|
||||
|
@ -705,19 +713,18 @@ cdef class Doc:
|
|||
cdef size_t count
|
||||
|
||||
if counts is None:
|
||||
counts = PreshCounter()
|
||||
counts = Counter()
|
||||
output_dict = True
|
||||
else:
|
||||
output_dict = False
|
||||
# Take this check out of the loop, for a bit of extra speed
|
||||
if exclude is None:
|
||||
for i in range(self.length):
|
||||
counts.inc(get_token_attr(&self.c[i], attr_id), 1)
|
||||
counts[get_token_attr(&self.c[i], attr_id)] += 1
|
||||
else:
|
||||
for i in range(self.length):
|
||||
if not exclude(self[i]):
|
||||
attr = get_token_attr(&self.c[i], attr_id)
|
||||
counts.inc(attr, 1)
|
||||
counts[get_token_attr(&self.c[i], attr_id)] += 1
|
||||
if output_dict:
|
||||
return dict(counts)
|
||||
|
||||
|
@ -850,7 +857,7 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://spacy.io/api/doc#to_bytes
|
||||
"""
|
||||
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE]
|
||||
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE] # TODO: ENT_KB_ID ?
|
||||
if self.is_tagged:
|
||||
array_head.append(TAG)
|
||||
# If doc parsed add head and dep attribute
|
||||
|
@ -1004,6 +1011,7 @@ cdef class Doc:
|
|||
"""
|
||||
cdef unicode tag, lemma, ent_type
|
||||
deprecation_warning(Warnings.W013.format(obj="Doc"))
|
||||
# TODO: ENT_KB_ID ?
|
||||
if len(args) == 3:
|
||||
deprecation_warning(Warnings.W003)
|
||||
tag, lemma, ent_type = args
|
||||
|
|
|
@ -210,7 +210,7 @@ cdef class Span:
|
|||
words = [t.text for t in self]
|
||||
spaces = [bool(t.whitespace_) for t in self]
|
||||
cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces)
|
||||
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE]
|
||||
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE, ENT_KB_ID]
|
||||
if self.doc.is_tagged:
|
||||
array_head.append(TAG)
|
||||
# If doc parsed add head and dep attribute
|
||||
|
|
|
@ -53,6 +53,8 @@ cdef class Token:
|
|||
return token.ent_iob
|
||||
elif feat_name == ENT_TYPE:
|
||||
return token.ent_type
|
||||
elif feat_name == ENT_KB_ID:
|
||||
return token.ent_kb_id
|
||||
elif feat_name == SENT_START:
|
||||
return token.sent_start
|
||||
else:
|
||||
|
@ -79,5 +81,7 @@ cdef class Token:
|
|||
token.ent_iob = value
|
||||
elif feat_name == ENT_TYPE:
|
||||
token.ent_type = value
|
||||
elif feat_name == ENT_KB_ID:
|
||||
token.ent_kb_id = value
|
||||
elif feat_name == SENT_START:
|
||||
token.sent_start = value
|
||||
|
|
|
@ -520,7 +520,9 @@ spaCy takes training data in JSON format. The built-in
|
|||
[`convert`](/api/cli#convert) command helps you convert the `.conllu` format
|
||||
used by the
|
||||
[Universal Dependencies corpora](https://github.com/UniversalDependencies) to
|
||||
spaCy's training format.
|
||||
spaCy's training format. To convert one or more existing `Doc` objects to
|
||||
spaCy's JSON format, you can use the
|
||||
[`gold.docs_to_json`](/api/goldparse#docs_to_json) helper.
|
||||
|
||||
> #### Annotating entities
|
||||
>
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user