mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-04 05:34:10 +03:00
Fix beam parser, improve efficiency of non-beam
This commit is contained in:
parent
4363b4aa4a
commit
6a42cc16ff
|
@ -1,4 +1,5 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
cimport numpy as np
|
||||
import numpy
|
||||
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||
|
@ -155,8 +156,6 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
|||
backprops = []
|
||||
violns = [MaxViolation() for _ in range(len(states))]
|
||||
for t in range(max_steps):
|
||||
if pbeam.is_done and gbeam.is_done:
|
||||
break
|
||||
beam_maps.append({})
|
||||
states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1], nr_update)
|
||||
if not states:
|
||||
|
@ -174,16 +173,6 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
|
|||
|
||||
for i, violn in enumerate(violns):
|
||||
violn.check_crf(pbeam[i], gbeam[i])
|
||||
# The non-monotonic oracle makes it difficult to ensure final costs are
|
||||
# correct. Therefore do final correction
|
||||
cdef Beam pred
|
||||
for i, (pred, gold_parse) in enumerate(zip(pbeam, golds)):
|
||||
for j in range(pred.size):
|
||||
if is_gold(<StateClass>pred.at(j), gold_parse, moves.strings):
|
||||
pred._states[j].loss = 0.0
|
||||
elif pred._states[j].loss == 0.0:
|
||||
pred._states[j].loss = 1.0
|
||||
violn.check_crf(pred, gbeam[i])
|
||||
|
||||
histories = [(v.p_hist + v.g_hist) for v in violns]
|
||||
losses = [(v.p_probs + v.g_probs) for v in violns]
|
||||
|
@ -199,20 +188,18 @@ def get_states(pbeams, gbeams, beam_map, nr_update):
|
|||
g_indices = []
|
||||
cdef Beam pbeam, gbeam
|
||||
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
|
||||
if pbeam.loss > 0 and pbeam.min_score > (gbeam.score + nr_update):
|
||||
continue
|
||||
p_indices.append([])
|
||||
for j in range(pbeam.size):
|
||||
state = <StateClass>pbeam.at(j)
|
||||
for i in range(pbeam.size):
|
||||
state = <StateClass>pbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + pbeam.histories[j])
|
||||
key = tuple([eg_id] + pbeam.histories[i])
|
||||
seen[key] = len(states)
|
||||
p_indices[-1].append(len(states))
|
||||
states.append(<StateClass>pbeam.at(j))
|
||||
states.append(<StateClass>pbeam.at(i))
|
||||
beam_map.update(seen)
|
||||
g_indices.append([])
|
||||
for i in range(gbeam.size):
|
||||
state = <StateClass>gbeam.at(j)
|
||||
state = <StateClass>gbeam.at(i)
|
||||
if not state.is_final():
|
||||
key = tuple([eg_id] + gbeam.histories[i])
|
||||
if key in seen:
|
||||
|
@ -243,17 +230,17 @@ def get_gradient(nr_class, beam_maps, histories, losses):
|
|||
nr_step = len(beam_maps)
|
||||
grads = []
|
||||
for beam_map in beam_maps:
|
||||
if beam_map:
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
else:
|
||||
grads.append(None)
|
||||
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
|
||||
assert len(histories) == len(losses)
|
||||
for eg_id, hists in enumerate(histories):
|
||||
for loss, hist in zip(losses[eg_id], hists):
|
||||
key = tuple([eg_id])
|
||||
for j, clas in enumerate(hist):
|
||||
if grads[j] is None:
|
||||
continue
|
||||
i = beam_maps[j][key]
|
||||
try:
|
||||
i = beam_maps[j][key]
|
||||
except:
|
||||
print(sorted(beam_maps[j].items()))
|
||||
raise
|
||||
# In step j, at state i action clas
|
||||
# resulted in loss
|
||||
grads[j][i, clas] += loss
|
||||
|
|
|
@ -34,6 +34,7 @@ from ._parse_features cimport CONTEXT_SIZE
|
|||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from .parser cimport Parser
|
||||
from ._beam_utils import is_gold
|
||||
|
||||
|
||||
DEBUG = False
|
||||
|
@ -237,16 +238,3 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
|
|||
raise Exception("Gold parse is not gold-standard")
|
||||
|
||||
|
||||
def is_gold(StateClass state, GoldParse gold, StringStore strings):
|
||||
predicted = set()
|
||||
truth = set()
|
||||
for i in range(gold.length):
|
||||
if gold.cand_to_gold[i] is None:
|
||||
continue
|
||||
if state.safe_get(i).dep:
|
||||
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
|
||||
else:
|
||||
predicted.add((i, state.H(i), 'ROOT'))
|
||||
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
|
||||
truth.add((id_, head, dep))
|
||||
return truth == predicted
|
||||
|
|
|
@ -66,7 +66,7 @@ from ..attrs cimport ID, TAG, DEP, ORTH, NORM, PREFIX, SUFFIX, TAG
|
|||
from . import _beam_utils
|
||||
|
||||
USE_FINE_TUNE = True
|
||||
BEAM_PARSE = False
|
||||
BEAM_PARSE = True
|
||||
|
||||
def get_templates(*args, **kwargs):
|
||||
return []
|
||||
|
@ -348,6 +348,8 @@ cdef class Parser:
|
|||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
if BEAM_PARSE:
|
||||
beam_width = 8
|
||||
cdef Doc doc
|
||||
cdef Beam beam
|
||||
for docs in cytoolz.partition_all(batch_size, docs):
|
||||
|
@ -439,6 +441,8 @@ cdef class Parser:
|
|||
cuda_stream, 0.0)
|
||||
beams = []
|
||||
cdef int offset = 0
|
||||
cdef int j = 0
|
||||
cdef int k
|
||||
for doc in docs:
|
||||
beam = Beam(nr_class, beam_width, min_density=beam_density)
|
||||
beam.initialize(self.moves.init_beam_state, doc.length, doc.c)
|
||||
|
@ -451,16 +455,22 @@ cdef class Parser:
|
|||
states = []
|
||||
for i in range(beam.size):
|
||||
stcls = <StateClass>beam.at(i)
|
||||
states.append(stcls)
|
||||
# This way we avoid having to score finalized states
|
||||
# We do have to take care to keep indexes aligned, though
|
||||
if not stcls.is_final():
|
||||
states.append(stcls)
|
||||
token_ids = self.get_token_ids(states)
|
||||
vectors = state2vec(token_ids)
|
||||
scores = vec2scores(vectors)
|
||||
j = 0
|
||||
c_scores = <float*>scores.data
|
||||
for i in range(beam.size):
|
||||
stcls = <StateClass>beam.at(i)
|
||||
if not stcls.is_final():
|
||||
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
||||
for j in range(nr_class):
|
||||
beam.scores[i][j] = scores[i, j]
|
||||
for k in range(nr_class):
|
||||
beam.scores[i][k] = c_scores[j * scores.shape[1] + k]
|
||||
j += 1
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
beams.append(beam)
|
||||
|
@ -540,6 +550,7 @@ cdef class Parser:
|
|||
losses[self.name] = 0.
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lengths = [len(d) for d in docs]
|
||||
assert min(lengths) >= 1
|
||||
tokvecs = self.model[0].ops.flatten(tokvecs)
|
||||
if USE_FINE_TUNE:
|
||||
my_tokvecs, bp_my_tokvecs = self.model[0].begin_update(docs_tokvecs, drop=drop)
|
||||
|
@ -554,9 +565,14 @@ cdef class Parser:
|
|||
states_d_scores, backprops = _beam_utils.update_beam(self.moves, self.nr_feature, max_moves,
|
||||
states, tokvecs, golds,
|
||||
state2vec, vec2scores,
|
||||
drop, sgd, losses)
|
||||
drop, sgd, losses,
|
||||
width=8)
|
||||
backprop_lower = []
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
if d_scores is None:
|
||||
continue
|
||||
if losses is not None:
|
||||
losses[self.name] += (d_scores**2).sum()
|
||||
ids, bp_vectors, bp_scores = backprops[i]
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
|
@ -617,14 +633,10 @@ cdef class Parser:
|
|||
xp = get_array_module(d_tokvecs)
|
||||
for ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
active_feats = ids * (ids >= 0)
|
||||
active_feats = active_feats.reshape((ids.shape[0], ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
ids, d_state_features * active_feats)
|
||||
mask = ids >= 0
|
||||
indices = xp.nonzero(mask)
|
||||
self.model[0].ops.scatter_add(d_tokvecs, ids[indices],
|
||||
d_state_features[indices])
|
||||
|
||||
@property
|
||||
def move_names(self):
|
||||
|
|
Loading…
Reference in New Issue
Block a user