Merge branch 'nightly.spacy.io' into develop

This commit is contained in:
Ines Montani 2020-07-04 14:23:55 +02:00
commit 6a5095621a
19 changed files with 523 additions and 932 deletions

View File

@ -0,0 +1,7 @@
---
title: Model Architectures
teaser: Pre-defined model architectures included with the core library
source: spacy/ml/models
---
TODO: write

View File

@ -13,6 +13,7 @@ menu:
- ['Init Model', 'init-model']
- ['Evaluate', 'evaluate']
- ['Package', 'package']
- ['Project', 'project']
---
For a list of available commands, type `spacy --help`.
@ -95,26 +96,29 @@ $ python -m spacy validate
## Convert {#convert}
Convert files into spaCy's [JSON format](/api/annotation#json-input) for use
with the `train` command and other experiment management functions. The
converter can be specified on the command line, or chosen based on the file
extension of the input file.
Convert files into spaCy's
[binary training data format](/usage/training#data-format), a serialized
[`DocBin`](/api/docbin), for use with the `train` command and other experiment
management functions. The converter can be specified on the command line, or
chosen based on the file extension of the input file.
```bash
$ python -m spacy convert [input_file] [output_dir] [--file-type] [--converter]
[--n-sents] [--morphology] [--lang]
$ python -m spacy convert [input_file] [output_dir] [--converter]
[--file-type] [--n-sents] [--seg-sents] [--model] [--morphology]
[--merge-subtokens] [--ner-map] [--lang]
```
| Argument | Type | Description |
| ------------------------------------------------ | ---------- | ------------------------------------------------------------------------------------------------------------------------ |
| `input_file` | positional | Input file. |
| `output_dir` | positional | Output directory for converted file. Defaults to `"-"`, meaning data will be written to `stdout`. |
| `--file-type`, `-t` <Tag variant="new">2.1</Tag> | option | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. |
| `--converter`, `-c` <Tag variant="new">2</Tag> | option | Name of converter to use (see below). |
| `--file-type`, `-t` <Tag variant="new">2.1</Tag> | option | Type of file to create. Either `spacy` (default) for binary [`DocBin`](/api/docbin) data or `json` for v2.x JSON format. |
| `--n-sents`, `-n` | option | Number of sentences per document. |
| `--seg-sents`, `-s` <Tag variant="new">2.2</Tag> | flag | Segment sentences (for `-c ner`) |
| `--model`, `-b` <Tag variant="new">2.2</Tag> | option | Model for parser-based sentence segmentation (for `-s`) |
| `--morphology`, `-m` | option | Enable appending morphology to tags. |
| `--ner-map`, `-nm` | option | NER tag mapping (as JSON-encoded dict of entity types). |
| `--lang`, `-l` <Tag variant="new">2.1</Tag> | option | Language code (if tokenizer required). |
| `--help`, `-h` | flag | Show help message and available arguments. |
| **CREATES** | binary | Binary [`DocBin`](/api/docbin) training data that can be used with [`spacy train`](/api/cli#train). |
@ -136,20 +140,21 @@ stats, and find problems like invalid entity annotations, cyclic dependencies,
low data labels and more.
```bash
$ python -m spacy debug-data [lang] [train_path] [dev_path] [--base-model] [--pipeline] [--ignore-warnings] [--verbose] [--no-format]
$ python -m spacy debug-data [lang] [train_path] [dev_path] [--base-model]
[--pipeline] [--tag-map-path] [--ignore-warnings] [--verbose] [--no-format]
```
| Argument | Type | Description |
| ------------------------------------------------------ | ---------- | -------------------------------------------------------------------------------------------------- |
| `lang` | positional | Model language. |
| `train_path` | positional | Location of JSON-formatted training data. Can be a file or a directory of files. |
| `dev_path` | positional | Location of JSON-formatted development data for evaluation. Can be a file or a directory of files. |
| `--tag-map-path`, `-tm` <Tag variant="new">2.2.4</Tag> | option | Location of JSON-formatted tag map. |
| `--base-model`, `-b` | option | Optional name of base model to update. Can be any loadable spaCy model. |
| `--pipeline`, `-p` | option | Comma-separated names of pipeline components to train. Defaults to `'tagger,parser,ner'`. |
| `--ignore-warnings`, `-IW` | flag | Ignore warnings, only show stats and errors. |
| `--verbose`, `-V` | flag | Print additional information and explanations. |
| `--no-format`, `-NF` | flag | Don't pretty-print the results. Use this if you want to write to a file. |
| Argument | Type | Description |
| ------------------------------------------------------ | ---------- | ------------------------------------------------------------------------------------------------------------------------- |
| `lang` | positional | Model language. |
| `train_path` | positional | Location of [binary training data](/usage/training#data-format). Can be a file or a directory of files. |
| `dev_path` | positional | Location of [binary development data](/usage/training#data-format) for evaluation. Can be a file or a directory of files. |
| `--tag-map-path`, `-tm` <Tag variant="new">2.2.4</Tag> | option | Location of JSON-formatted tag map. |
| `--base-model`, `-b` | option | Optional name of base model to update. Can be any loadable spaCy model. |
| `--pipeline`, `-p` | option | Comma-separated names of pipeline components to train. Defaults to `'tagger,parser,ner'`. |
| `--ignore-warnings`, `-IW` | flag | Ignore warnings, only show stats and errors. |
| `--verbose`, `-V` | flag | Print additional information and explanations. |
| `--no-format`, `-NF` | flag | Don't pretty-print the results. Use this if you want to write to a file. |
<Accordion title="Example output">
@ -292,6 +297,8 @@ will not be available.
## Train {#train}
<!-- TODO: document new training -->
Train a model. Expects data in spaCy's
[JSON format](/api/annotation#json-input). On each epoch, a model will be saved
out to the directory. Accuracy scores and model details will be added to a
@ -345,47 +352,10 @@ $ python -m spacy train [lang] [output_path] [train_path] [dev_path]
| `--help`, `-h` | flag | Show help message and available arguments. |
| **CREATES** | model, pickle | A spaCy model on each epoch. |
### Environment variables for hyperparameters {#train-hyperparams new="2"}
spaCy lets you set hyperparameters for training via environment variables. For
example:
```bash
$ token_vector_width=256 learn_rate=0.0001 spacy train [...]
```
> #### Usage with alias
>
> Environment variables keep the command simple and allow you to to
> [create an alias](https://askubuntu.com/questions/17536/how-do-i-create-a-permanent-bash-alias/17537#17537)
> for your custom `train` command while still being able to easily tweak the
> hyperparameters.
>
> ```bash
> alias train-parser="python -m spacy train en /output /data /train /dev -n 1000"
> token_vector_width=256 train-parser
> ```
| Name | Description | Default |
| -------------------- | --------------------------------------------------- | ------- |
| `dropout_from` | Initial dropout rate. | `0.2` |
| `dropout_to` | Final dropout rate. | `0.2` |
| `dropout_decay` | Rate of dropout change. | `0.0` |
| `batch_from` | Initial batch size. | `1` |
| `batch_to` | Final batch size. | `64` |
| `batch_compound` | Rate of batch size acceleration. | `1.001` |
| `token_vector_width` | Width of embedding tables and convolutional layers. | `128` |
| `embed_size` | Number of rows in embedding tables. | `7500` |
| `hidden_width` | Size of the parser's and NER's hidden layers. | `128` |
| `learn_rate` | Learning rate. | `0.001` |
| `optimizer_B1` | Momentum for the Adam solver. | `0.9` |
| `optimizer_B2` | Adagrad-momentum for the Adam solver. | `0.999` |
| `optimizer_eps` | Epsilon value for the Adam solver. | `1e-08` |
| `L2_penalty` | L2 regularization penalty. | `1e-06` |
| `grad_norm_clip` | Gradient L2 norm constraint. | `1.0` |
## Pretrain {#pretrain new="2.1" tag="experimental"}
<!-- TODO: document new pretrain command and link to new pretraining docs -->
Pre-train the "token to vector" (`tok2vec`) layer of pipeline components, using
an approximate language-modeling objective. Specifically, we load pretrained
vectors, and train a component like a CNN, BiLSTM, etc to predict vectors which
@ -491,6 +461,8 @@ $ python -m spacy init-model [lang] [output_dir] [--jsonl-loc] [--vectors-loc]
## Evaluate {#evaluate new="2"}
<!-- TODO: document new evaluate command -->
Evaluate a model's accuracy and speed on JSON-formatted annotated data. Will
print the results and optionally export
[displaCy visualizations](/usage/visualizers) of a sample set of parses to
@ -516,12 +488,20 @@ $ python -m spacy evaluate [model] [data_path] [--displacy-path] [--displacy-lim
## Package {#package}
Generate a [model Python package](/usage/training#models-generating) from an
existing model data directory. All data files are copied over. If the path to a
`meta.json` is supplied, or a `meta.json` is found in the input directory, this
file is used. Otherwise, the data can be entered directly from the command line.
After packaging, you can run `python setup.py sdist` from the newly created
directory to turn your model into an installable archive file.
Generate an installable
[model Python package](/usage/training#models-generating) from an existing model
data directory. All data files are copied over. If the path to a `meta.json` is
supplied, or a `meta.json` is found in the input directory, this file is used.
Otherwise, the data can be entered directly from the command line. spaCy will
then create a `.tar.gz` archive file that you can distribute and install with
`pip install`.
<Infobox title="New in v3.0" variant="warning">
The `spacy package` command now also builds the `.tar.gz` archive automatically,
so you don't have to run `python setup.py sdist` separately anymore.
</Infobox>
```bash
$ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta] [--force]
@ -531,7 +511,6 @@ $ python -m spacy package [input_dir] [output_dir] [--meta-path] [--create-meta]
### Example
python -m spacy package /input /output
cd /output/en_model-0.0.0
python setup.py sdist
pip install dist/en_model-0.0.0.tar.gz
```
@ -541,6 +520,23 @@ pip install dist/en_model-0.0.0.tar.gz
| `output_dir` | positional | Directory to create package folder in. |
| `--meta-path`, `-m` <Tag variant="new">2</Tag> | option | Path to `meta.json` file (optional). |
| `--create-meta`, `-c` <Tag variant="new">2</Tag> | flag | Create a `meta.json` file on the command line, even if one already exists in the directory. If an existing file is found, its entries will be shown as the defaults in the command line prompt. |
| `--version`, `-v` <Tag variant="new">3</Tag> | option | Package version to override in meta. Useful when training new versions, as it doesn't require editing the meta template. |
| `--force`, `-f` | flag | Force overwriting of existing folder in output directory. |
| `--help`, `-h` | flag | Show help message and available arguments. |
| **CREATES** | directory | A Python package containing the spaCy model. |
## Project {#project}
<!-- TODO: document project command and subcommands. We should probably wait and only finalize this once we've finalized the design -->
### project clone {#project-clone}
### project assets {#project-assets}
### project run-all {#project-run-all}
### project run {#project-run}
### project init {#project-init}
### project update-dvc {#project-update-dvc}

View File

@ -0,0 +1,37 @@
---
title: Corpus
teaser: An annotated corpus
tag: class
source: spacy/gold/corpus.py
new: 3
---
This class manages annotated corpora and can read training and development
datasets in the [DocBin](/api/docbin) (`.spacy`) format.
## Corpus.\_\_init\_\_ {#init tag="method"}
Create a `Corpus`. The input data can be a file or a directory of files.
| Name | Type | Description |
| ----------- | ------------ | ---------------------------------------------------------------- |
| `train` | str / `Path` | Training data (`.spacy` file or directory of `.spacy` files). |
| `dev` | str / `Path` | Development data (`.spacy` file or directory of `.spacy` files). |
| `limit` | int | Maximum number of examples returned. |
| **RETURNS** | `Corpus` | The newly constructed object. |
<!-- TODO: document remaining methods / decide which to document -->
## Corpus.walk_corpus {#walk_corpus tag="staticmethod"}
## Corpus.make_examples {#make_examples tag="method"}
## Corpus.make_examples_gold_preproc {#make_examples_gold_preproc tag="method"}
## Corpus.read_docbin {#read_docbin tag="method"}
## Corpus.count_train {#count_train tag="method"}
## Corpus.train_dataset {#train_dataset tag="method"}
## Corpus.dev_dataset {#dev_dataset tag="method"}

View File

@ -123,7 +123,7 @@ details, see the documentation on
| Name | Type | Description |
| --------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------- |
| `name` | str | Name of the attribute to set by the extension. For example, `'my_attr'` will be available as `doc._.my_attr`. |
| `name` | str | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `doc._.my_attr`. |
| `default` | - | Optional default value of the attribute if no getter or method is defined. |
| `method` | callable | Set a custom method on the object, for example `doc._.compare(other_doc)`. |
| `getter` | callable | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. |
@ -140,8 +140,8 @@ Look up a previously registered extension by name. Returns a 4-tuple
>
> ```python
> from spacy.tokens import Doc
> Doc.set_extension('has_city', default=False)
> extension = Doc.get_extension('has_city')
> Doc.set_extension("has_city", default=False)
> extension = Doc.get_extension("has_city")
> assert extension == (False, None, None, None)
> ```
@ -158,8 +158,8 @@ Check whether an extension has been registered on the `Doc` class.
>
> ```python
> from spacy.tokens import Doc
> Doc.set_extension('has_city', default=False)
> assert Doc.has_extension('has_city')
> Doc.set_extension("has_city", default=False)
> assert Doc.has_extension("has_city")
> ```
| Name | Type | Description |
@ -175,9 +175,9 @@ Remove a previously registered extension.
>
> ```python
> from spacy.tokens import Doc
> Doc.set_extension('has_city', default=False)
> removed = Doc.remove_extension('has_city')
> assert not Doc.has_extension('has_city')
> Doc.set_extension("has_city", default=False)
> removed = Doc.remove_extension("has_city")
> assert not Doc.has_extension("has_city")
> ```
| Name | Type | Description |
@ -204,7 +204,7 @@ the character indices don't map to a valid span.
| `end` | int | The index of the last character after the span. |
| `label` | uint64 / str | A label to attach to the span, e.g. for named entities. |
| `kb_id` <Tag variant="new">2.2</Tag> | uint64 / str | An ID from a knowledge base to capture the meaning of a named entity. |
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | A meaning representation of the span. |
| `vector` | `numpy.ndarray[ndim=1, dtype="float32"]` | A meaning representation of the span. |
| **RETURNS** | `Span` | The newly constructed object or `None`. |
## Doc.similarity {#similarity tag="method" model="vectors"}
@ -264,7 +264,7 @@ ancestor is found, e.g. if span excludes a necessary ancestor.
| Name | Type | Description |
| ----------- | -------------------------------------- | ----------------------------------------------- |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype='int32']` | The lowest common ancestor matrix of the `Doc`. |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype="int32"]` | The lowest common ancestor matrix of the `Doc`. |
## Doc.to_json {#to_json tag="method" new="2.1"}
@ -303,7 +303,7 @@ Export given token attributes to a numpy `ndarray`. If `attr_ids` is a sequence
of `M` attributes, the output array will be of shape `(N, M)`, where `N` is the
length of the `Doc` (in tokens). If `attr_ids` is a single attribute, the output
shape will be `(N,)`. You can specify attributes by integer ID (e.g.
`spacy.attrs.LEMMA`) or string name (e.g. 'LEMMA' or 'lemma'). The values will
`spacy.attrs.LEMMA`) or string name (e.g. "LEMMA" or "lemma"). The values will
be 64-bit integers.
Returns a 2D array with one row per token and one column per attribute (when
@ -323,7 +323,7 @@ Returns a 2D array with one row per token and one column per attribute (when
| Name | Type | Description |
| ----------- | ---------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------- |
| `attr_ids` | list or int or string | A list of attributes (int IDs or string names) or a single attribute (int ID or string name) |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype='uint64']` or `numpy.ndarray[ndim=1, dtype='uint64']` | The exported attributes as a numpy array. |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype="uint64"]` or `numpy.ndarray[ndim=1, dtype="uint64"]` | The exported attributes as a numpy array. |
## Doc.from_array {#from_array tag="method"}
@ -345,14 +345,14 @@ array of attributes.
| Name | Type | Description |
| ----------- | -------------------------------------- | ------------------------------------------------------------------------- |
| `attrs` | list | A list of attribute ID ints. |
| `array` | `numpy.ndarray[ndim=2, dtype='int32']` | The attribute values to load. |
| `array` | `numpy.ndarray[ndim=2, dtype="int32"]` | The attribute values to load. |
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
| **RETURNS** | `Doc` | Itself. |
## Doc.from_docs {#from_docs tag="staticmethod"}
Concatenate multiple `Doc` objects to form a new one. Raises an error if the `Doc` objects do not all share the same `Vocab`.
Concatenate multiple `Doc` objects to form a new one. Raises an error if the
`Doc` objects do not all share the same `Vocab`.
> #### Example
>
@ -634,7 +634,7 @@ vectors.
| Name | Type | Description |
| ----------- | ---------------------------------------- | ------------------------------------------------------- |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the document's semantics. |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype="float32"]` | A 1D numpy array representing the document's semantics. |
## Doc.vector_norm {#vector_norm tag="property" model="vectors"}

View File

@ -1,24 +0,0 @@
---
title: GoldCorpus
teaser: An annotated corpus, using the JSON file format
tag: class
source: spacy/gold.pyx
new: 2
---
This class manages annotations for tagging, dependency parsing and NER.
## GoldCorpus.\_\_init\_\_ {#init tag="method"}
Create a `GoldCorpus`. IF the input data is an iterable, each item should be a
`(text, paragraphs)` tuple, where each paragraph is a tuple
`(sentences, brackets)`, and each sentence is a tuple
`(ids, words, tags, heads, ner)`. See the implementation of
[`gold.read_json_file`](https://github.com/explosion/spaCy/tree/master/spacy/gold.pyx)
for further details.
| Name | Type | Description |
| ----------- | ----------------------- | ------------------------------------------------------------ |
| `train` | str / `Path` / iterable | Training data, as a path (file or directory) or iterable. |
| `dev` | str / `Path` / iterable | Development data, as a path (file or directory) or iterable. |
| **RETURNS** | `GoldCorpus` | The newly constructed object. |

View File

@ -1,10 +1,8 @@
---
title: Architecture
next: /api/annotation
title: Library Architecture
next: /api/architectures
---
## Library architecture {#architecture}
import Architecture101 from 'usage/101/\_architecture.md'
<Architecture101 />

View File

@ -0,0 +1,29 @@
---
title: SentenceRecognizer
tag: class
source: spacy/pipeline/pipes.pyx
new: 3
---
A trainable pipeline component for sentence segmentation. For a simpler,
ruse-based strategy, see the [`Sentencizer`](/api/sentencizer). This class is a
subclass of `Pipe` and follows the same API. The component is also available via
the string name `"senter"`. After initialization, it is typically added to the
processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
## SentenceRecognizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentence recognizer.
> #### Example
>
> ```python
> # Construction via create_pipe
> senter = nlp.create_pipe("senter")
>
> # Construction from class
> from spacy.pipeline import SentenceRecognizer
> senter = SentenceRecognizer()
> ```
<!-- TODO: document, similar to other trainable pipeline components -->

View File

@ -12,19 +12,6 @@ require a statistical model to be loaded. The component is also available via
the string name `"sentencizer"`. After initialization, it is typically added to
the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
<Infobox title="Important note" variant="warning">
Compared to the previous `SentenceSegmenter` class, the `Sentencizer` component
doesn't add a hook to `doc.user_hooks["sents"]`. Instead, it iterates over the
tokens in the `Doc` and sets the `Token.is_sent_start` property. The
`SentenceSegmenter` is still available if you import it directly:
```python
from spacy.pipeline import SentenceSegmenter
```
</Infobox>
## Sentencizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentencizer.
@ -40,10 +27,24 @@ Initialize the sentencizer.
> sentencizer = Sentencizer()
> ```
| Name | Type | Description |
| ------------- | ------------- | ------------------------------------------------------------------------------------------------------ |
| `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. Defaults to `['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።', '፧', '፨', '', '', '᜶', '', '', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '', '', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '', '', '', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']`. |
| **RETURNS** | `Sentencizer` | The newly constructed object. |
| Name | Type | Description |
| ------------- | ------------- | ----------------------------------------------------------------------------------------------- |
| `punct_chars` | list | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. |
| **RETURNS** | `Sentencizer` | The newly constructed object. |
```python
### punct_chars defaults
['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።',
'፧', '፨', '', '', '᜶', '', '', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫',
'᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉',
'⸮', '⸼', '', '', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈',
'꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '', '', '',
'𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅',
'𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂',
'𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓',
'𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛',
'𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
```
## Sentencizer.\_\_call\_\_ {#call tag="method"}

View File

@ -25,7 +25,7 @@ Create a Span object from the slice `doc[start : end]`.
| `end` | int | The index of the first token after the span. |
| `label` | int / str | A label to attach to the span, e.g. for named entities. As of v2.1, the label can also be a string. |
| `kb_id` | int / str | A knowledge base ID to attach to the span, e.g. for named entities. The ID can be an integer or a string. |
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | A meaning representation of the span. |
| `vector` | `numpy.ndarray[ndim=1, dtype="float32"]` | A meaning representation of the span. |
| **RETURNS** | `Span` | The newly constructed object. |
## Span.\_\_getitem\_\_ {#getitem tag="method"}
@ -110,7 +110,7 @@ For details, see the documentation on
| Name | Type | Description |
| --------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | str | Name of the attribute to set by the extension. For example, `'my_attr'` will be available as `span._.my_attr`. |
| `name` | str | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `span._.my_attr`. |
| `default` | - | Optional default value of the attribute if no getter or method is defined. |
| `method` | callable | Set a custom method on the object, for example `span._.compare(other_span)`. |
| `getter` | callable | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. |
@ -191,7 +191,7 @@ the character indices don't map to a valid span.
| `end` | int | The index of the last character after the span. |
| `label` | uint64 / str | A label to attach to the span, e.g. for named entities. |
| `kb_id` | uint64 / str | An ID from a knowledge base to capture the meaning of a named entity. |
| `vector` | `numpy.ndarray[ndim=1, dtype='float32']` | A meaning representation of the span. |
| `vector` | `numpy.ndarray[ndim=1, dtype="float32"]` | A meaning representation of the span. |
| **RETURNS** | `Span` | The newly constructed object or `None`. |
## Span.similarity {#similarity tag="method" model="vectors"}
@ -232,7 +232,7 @@ ancestor is found, e.g. if span excludes a necessary ancestor.
| Name | Type | Description |
| ----------- | -------------------------------------- | ------------------------------------------------ |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype='int32']` | The lowest common ancestor matrix of the `Span`. |
| **RETURNS** | `numpy.ndarray[ndim=2, dtype="int32"]` | The lowest common ancestor matrix of the `Span`. |
## Span.to_array {#to_array tag="method" new="2"}
@ -440,7 +440,7 @@ vectors.
| Name | Type | Description |
| ----------- | ---------------------------------------- | --------------------------------------------------- |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the span's semantics. |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype="float32"]` | A 1D numpy array representing the span's semantics. |
## Span.vector_norm {#vector_norm tag="property" model="vectors"}

View File

@ -58,7 +58,7 @@ For details, see the documentation on
| Name | Type | Description |
| --------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | str | Name of the attribute to set by the extension. For example, `'my_attr'` will be available as `token._.my_attr`. |
| `name` | str | Name of the attribute to set by the extension. For example, `"my_attr"` will be available as `token._.my_attr`. |
| `default` | - | Optional default value of the attribute if no getter or method is defined. |
| `method` | callable | Set a custom method on the object, for example `token._.compare(other_token)`. |
| `getter` | callable | Getter function that takes the object and returns an attribute value. Is called when the user accesses the `._` attribute. |
@ -370,7 +370,7 @@ A real-valued meaning representation.
| Name | Type | Description |
| ----------- | ---------------------------------------- | ---------------------------------------------------- |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype='float32']` | A 1D numpy array representing the token's semantics. |
| **RETURNS** | `numpy.ndarray[ndim=1, dtype="float32"]` | A 1D numpy array representing the token's semantics. |
## Token.vector_norm {#vector_norm tag="property" model="vectors"}
@ -435,8 +435,8 @@ The L2 norm of the token's vector representation.
| `is_upper` | bool | Is the token in uppercase? Equivalent to `token.text.isupper()`. |
| `is_title` | bool | Is the token in titlecase? Equivalent to `token.text.istitle()`. |
| `is_punct` | bool | Is the token punctuation? |
| `is_left_punct` | bool | Is the token a left punctuation mark, e.g. `'('` ? |
| `is_right_punct` | bool | Is the token a right punctuation mark, e.g. `')'` ? |
| `is_left_punct` | bool | Is the token a left punctuation mark, e.g. `"("` ? |
| `is_right_punct` | bool | Is the token a right punctuation mark, e.g. `")"` ? |
| `is_space` | bool | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. |
| `is_bracket` | bool | Is the token a bracket? |
| `is_quote` | bool | Is the token a quotation mark? |

View File

@ -3,8 +3,8 @@ title: Top-level Functions
menu:
- ['spacy', 'spacy']
- ['displacy', 'displacy']
- ['Data & Alignment', 'gold']
- ['Utility Functions', 'util']
- ['Compatibility', 'compat']
---
## spaCy {#spacy hidden="true"}
@ -77,8 +77,8 @@ meta data as a dictionary instead, you can use the `meta` attribute on your
>
> ```python
> spacy.info()
> spacy.info("en")
> spacy.info("de", markdown=True)
> spacy.info("en_core_web_sm")
> spacy.info(markdown=True)
> ```
| Name | Type | Description |
@ -259,6 +259,156 @@ colors for them. Your application or model package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically.
## Training data and alignment {#gold source="spacy/gold"}
### gold.docs_to_json {#docs_to_json tag="function"}
Convert a list of Doc objects into the
[JSON-serializable format](/api/annotation#json-input) used by the
[`spacy train`](/api/cli#train) command. Each input doc will be treated as a
'paragraph' in the output doc.
> #### Example
>
> ```python
> from spacy.gold import docs_to_json
>
> doc = nlp("I like London")
> json_data = docs_to_json([doc])
> ```
| Name | Type | Description |
| ----------- | ---------------- | ------------------------------------------ |
| `docs` | iterable / `Doc` | The `Doc` object(s) to convert. |
| `id` | int | ID to assign to the JSON. Defaults to `0`. |
| **RETURNS** | dict | The data in spaCy's JSON format. |
### gold.align {#align tag="function"}
Calculate alignment tables between two tokenizations, using the Levenshtein
algorithm. The alignment is case-insensitive.
<Infobox title="Important note" variant="warning">
The current implementation of the alignment algorithm assumes that both
tokenizations add up to the same string. For example, you'll be able to align
`["I", "'", "m"]` and `["I", "'m"]`, which both add up to `"I'm"`, but not
`["I", "'m"]` and `["I", "am"]`.
</Infobox>
> #### Example
>
> ```python
> from spacy.gold import align
>
> bert_tokens = ["obama", "'", "s", "podcast"]
> spacy_tokens = ["obama", "'s", "podcast"]
> alignment = align(bert_tokens, spacy_tokens)
> cost, a2b, b2a, a2b_multi, b2a_multi = alignment
> ```
| Name | Type | Description |
| ----------- | ----- | -------------------------------------------------------------------------- |
| `tokens_a` | list | String values of candidate tokens to align. |
| `tokens_b` | list | String values of reference tokens to align. |
| **RETURNS** | tuple | A `(cost, a2b, b2a, a2b_multi, b2a_multi)` tuple describing the alignment. |
The returned tuple contains the following alignment information:
> #### Example
>
> ```python
> a2b = array([0, -1, -1, 2])
> b2a = array([0, 2, 3])
> a2b_multi = {1: 1, 2: 1}
> b2a_multi = {}
> ```
>
> If `a2b[3] == 2`, that means that `tokens_a[3]` aligns to `tokens_b[2]`. If
> there's no one-to-one alignment for a token, it has the value `-1`.
| Name | Type | Description |
| ----------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `cost` | int | The number of misaligned tokens. |
| `a2b` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_a` to indices in `tokens_b`. |
| `b2a` | `numpy.ndarray[ndim=1, dtype='int32']` | One-to-one mappings of indices in `tokens_b` to indices in `tokens_a`. |
| `a2b_multi` | dict | A dictionary mapping indices in `tokens_a` to indices in `tokens_b`, where multiple tokens of `tokens_a` align to the same token of `tokens_b`. |
| `b2a_multi` | dict | A dictionary mapping indices in `tokens_b` to indices in `tokens_a`, where multiple tokens of `tokens_b` align to the same token of `tokens_a`. |
### gold.biluo_tags_from_offsets {#biluo_tags_from_offsets tag="function"}
Encode labelled spans into per-token tags, using the
[BILUO scheme](/api/annotation#biluo) (Begin, In, Last, Unit, Out). Returns a
list of strings, describing the tags. Each tag string will be of the form of
either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`,
`"L"`, `"U"`. The string `"-"` is used where the entity offsets don't align with
the tokenization in the `Doc` object. The training algorithm will view these as
missing values. `O` denotes a non-entity token. `B` denotes the beginning of a
multi-token entity, `I` the inside of an entity of three or more tokens, and `L`
the end of an entity of two or more tokens. `U` denotes a single-token entity.
> #### Example
>
> ```python
> from spacy.gold import biluo_tags_from_offsets
>
> doc = nlp("I like London.")
> entities = [(7, 13, "LOC")]
> tags = biluo_tags_from_offsets(doc, entities)
> assert tags == ["O", "O", "U-LOC", "O"]
> ```
| Name | Type | Description |
| ----------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the entity offsets refer to. The output tags will refer to the token boundaries within the document. |
| `entities` | iterable | A sequence of `(start, end, label)` triples. `start` and `end` should be character-offset integers denoting the slice into the original string. |
| **RETURNS** | list | str strings, describing the [BILUO](/api/annotation#biluo) tags. |
### gold.offsets_from_biluo_tags {#offsets_from_biluo_tags tag="function"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
entity offsets.
> #### Example
>
> ```python
> from spacy.gold import offsets_from_biluo_tags
>
> doc = nlp("I like London.")
> tags = ["O", "O", "U-LOC", "O"]
> entities = offsets_from_biluo_tags(doc, tags)
> assert entities == [(7, 13, "LOC")]
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `(start, end, label)` triples. `start` and `end` will be character-offset integers denoting the slice into the original string. |
### gold.spans_from_biluo_tags {#spans_from_biluo_tags tag="function" new="2.1"}
Encode per-token tags following the [BILUO scheme](/api/annotation#biluo) into
[`Span`](/api/span) objects. This can be used to create entity spans from
token-based tags, e.g. to overwrite the `doc.ents`.
> #### Example
>
> ```python
> from spacy.gold import spans_from_biluo_tags
>
> doc = nlp("I like London.")
> tags = ["O", "O", "U-LOC", "O"]
> doc.ents = spans_from_biluo_tags(doc, tags)
> ```
| Name | Type | Description |
| ----------- | -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | `Doc` | The document that the BILUO tags refer to. |
| `entities` | iterable | A sequence of [BILUO](/api/annotation#biluo) tags with each tag describing one token. Each tag string will be of the form of either `""`, `"O"` or `"{action}-{label}"`, where action is one of `"B"`, `"I"`, `"L"`, `"U"`. |
| **RETURNS** | list | A sequence of `Span` objects with added entity labels. |
## Utility functions {#util source="spacy/util.py"}
spaCy comes with a small collection of utility functions located in
@ -269,32 +419,6 @@ page should be safe to use and we'll try to ensure backwards compatibility.
However, we recommend having additional tests in place if your application
depends on any of spaCy's utilities.
### util.get_data_path {#util.get_data_path tag="function"}
Get path to the data directory where spaCy looks for models. Defaults to
`spacy/data`.
| Name | Type | Description |
| ---------------- | --------------- | ------------------------------------------------------- |
| `require_exists` | bool | Only return path if it exists, otherwise return `None`. |
| **RETURNS** | `Path` / `None` | Data path or `None`. |
### util.set_data_path {#util.set_data_path tag="function"}
Set custom path to the data directory where spaCy looks for models.
> #### Example
>
> ```python
> util.set_data_path("/custom/path")
> util.get_data_path()
> # PosixPath('/custom/path')
> ```
| Name | Type | Description |
| ------ | ------------ | --------------------------- |
| `path` | str / `Path` | Path to new data directory. |
### util.get_lang_class {#util.get_lang_class tag="function"}
Import and load a `Language` class. Allows lazy-loading
@ -368,7 +492,7 @@ class. The model data will then be loaded in via
> #### Example
>
> ```python
> nlp = util.load_model("en")
> nlp = util.load_model("en_core_web_sm")
> nlp = util.load_model("en_core_web_sm", disable=["ner"])
> nlp = util.load_model("/path/to/data")
> ```
@ -661,3 +785,13 @@ of one entity) or when merging spans with
| ----------- | -------- | -------------------- |
| `spans` | iterable | The spans to filter. |
| **RETURNS** | list | The filtered spans. |
## util.get_words_and_spaces {#get_words_and_spaces tag="function" new="3"}
<!-- TODO: document -->
| Name | Type | Description |
| ----------- | ----- | ----------- |
| `words` | list | |
| `text` | str | |
| **RETURNS** | tuple | |

View File

@ -12,6 +12,8 @@ place** by the components of the pipeline. The `Language` object coordinates
these components. It takes raw text and sends it through the pipeline, returning
an **annotated document**. It also orchestrates training and serialization.
<!-- TODO: update architecture and tables below to match sidebar in API docs etc. -->
![Library architecture](../../images/architecture.svg)
### Container objects {#architecture-containers}

View File

@ -392,9 +392,7 @@ loading models, the underlying functionality is entirely based on native Python
packages. This allows your application to handle a model like any other package
dependency.
For an example of an automated model training and build process, see
[this overview](/usage/training#example-training-spacy) of how we're training
and packaging our models for spaCy.
<!-- TODO: reference relevant spaCy project -->
### Downloading and requiring model dependencies {#models-download}

View File

@ -711,67 +711,4 @@ class and call [`from_disk`](/api/language#from_disk) instead.
nlp = spacy.blank("en").from_disk("/path/to/data")
```
<Infobox title="Important note: Loading data in v2.x" variant="warning">
In spaCy 1.x, the distinction between `spacy.load()` and the `Language` class
constructor was quite unclear. You could call `spacy.load()` when no model was
present, and it would silently return an empty object. Likewise, you could pass
a path to `English`, even if the mode required a different language. spaCy v2.0
solves this with a clear distinction between setting up the instance and loading
the data.
```diff
- nlp = spacy.load("en_core_web_sm", path="/path/to/data")
+ nlp = spacy.blank("en_core_web_sm").from_disk("/path/to/data")
```
</Infobox>
### How we're training and packaging models for spaCy {#example-training-spacy}
Publishing a new version of spaCy often means re-training all available models,
which is [quite a lot](/usage/models#languages). To make this run smoothly,
we're using an automated build process and a [`spacy train`](/api/cli#train)
template that looks like this:
```bash
$ python -m spacy train {lang} {models_dir}/{name} {train_data} {dev_data} -m meta/{name}.json -V {version} -g {gpu_id} -n {n_epoch} -ns {n_sents}
```
> #### meta.json template
>
> ```json
> {
> "lang": "en",
> "name": "core_web_sm",
> "license": "CC BY-SA 3.0",
> "author": "Explosion AI",
> "url": "https://explosion.ai",
> "email": "contact@explosion.ai",
> "sources": ["OntoNotes 5", "Common Crawl"],
> "description": "English multi-task CNN trained on OntoNotes, with GloVe vectors trained on common crawl. Assigns word vectors, context-specific token vectors, POS tags, dependency parse and named entities."
> }
> ```
In a directory `meta`, we keep `meta.json` templates for the individual models,
containing all relevant information that doesn't change across versions, like
the name, description, author info and training data sources. When we train the
model, we pass in the file to the meta template as the `--meta` argument, and
specify the current model version as the `--version` argument.
On each epoch, the model is saved out with a `meta.json` using our template and
added properties, like the `pipeline`, `accuracy` scores and the `spacy_version`
used to train the model. After training completion, the best model is selected
automatically and packaged using the [`package`](/api/cli#package) command.
Since a full meta file is already present on the trained model, no further setup
is required to build a valid model package.
```bash
python -m spacy package -f {best_model} dist/
cd dist/{model_name}
python setup.py sdist
```
This process allows us to quickly trigger the model training and build process
for all available models and languages, and generate the correct meta data
automatically.
<!-- TODO: point to spaCy projects? -->

View File

@ -2,174 +2,22 @@
title: Training Models
next: /usage/projects
menu:
- ['Basics', 'basics']
- ['NER', 'ner']
- ['Tagger & Parser', 'tagger-parser']
- ['Text Classification', 'textcat']
- ['Entity Linking', 'entity-linker']
- ['Tips and Advice', 'tips']
- ['Introduction', 'basics']
- ['CLI & Config', 'cli-config']
- ['Custom Models', 'custom-models']
- ['Transfer Learning', 'transfer-learning']
- ['Parallel Training', 'parallel-training']
- ['Internal API', 'api']
---
This guide describes how to train new statistical models for spaCy's
part-of-speech tagger, named entity recognizer, dependency parser, text
classifier and entity linker. Once the model is trained, you can then
[save and load](/usage/saving-loading#models) it.
<!-- TODO: intro describing the new v3 training philosophy -->
## Training basics {#basics}
## Introduction to training models {#basics}
import Training101 from 'usage/101/\_training.md'
<Training101 />
### Training via the command-line interface {#spacy-train-cli}
For most purposes, the best way to train spaCy is via the command-line
interface. The [`spacy train`](/api/cli#train) command takes care of many
details for you, including making sure that the data is minibatched and shuffled
correctly, progress is printed, and models are saved after each epoch. You can
prepare your data for use in [`spacy train`](/api/cli#train) using the
[`spacy convert`](/api/cli#convert) command, which accepts many common NLP data
formats, including `.iob` for named entities, and the CoNLL format for
dependencies:
```bash
git clone https://github.com/UniversalDependencies/UD_Spanish-AnCora
mkdir ancora-json
python -m spacy convert UD_Spanish-AnCora/es_ancora-ud-train.conllu ancora-json
python -m spacy convert UD_Spanish-AnCora/es_ancora-ud-dev.conllu ancora-json
mkdir models
python -m spacy train es models ancora-json/es_ancora-ud-train.json ancora-json/es_ancora-ud-dev.json
```
<Infobox title="Tip: Debug your data">
If you're running spaCy v2.2 or above, you can use the
[`debug-data` command](/api/cli#debug-data) to analyze and validate your
training and development data, get useful stats, and find problems like invalid
entity annotations, cyclic dependencies, low data labels and more.
```bash
$ python -m spacy debug-data en train.json dev.json --verbose
```
</Infobox>
You can also use the [`gold.docs_to_json`](/api/goldparse#docs_to_json) helper
to convert a list of `Doc` objects to spaCy's JSON training format.
#### Understanding the training output
When you train a model using the [`spacy train`](/api/cli#train) command, you'll
see a table showing metrics after each pass over the data. Here's what those
metrics means:
> #### Tokenization metrics
>
> Note that if the development data has raw text, some of the gold-standard
> entities might not align to the predicted tokenization. These tokenization
> errors are **excluded from the NER evaluation**. If your tokenization makes it
> impossible for the model to predict 50% of your entities, your NER F-score
> might still look good.
| Name | Description |
| ---------- | ------------------------------------------------------------------------------------------------- |
| `Dep Loss` | Training loss for dependency parser. Should decrease, but usually not to 0. |
| `NER Loss` | Training loss for named entity recognizer. Should decrease, but usually not to 0. |
| `UAS` | Unlabeled attachment score for parser. The percentage of unlabeled correct arcs. Should increase. |
| `NER P.` | NER precision on development data. Should increase. |
| `NER R.` | NER recall on development data. Should increase. |
| `NER F.` | NER F-score on development data. Should increase. |
| `Tag %` | Fine-grained part-of-speech tag accuracy on development data. Should increase. |
| `Token %` | Tokenization accuracy on development data. |
| `CPU WPS` | Prediction speed on CPU in words per second, if available. Should stay stable. |
| `GPU WPS` | Prediction speed on GPU in words per second, if available. Should stay stable. |
### Improving accuracy with transfer learning {#transfer-learning new="2.1"}
In most projects, you'll usually have a small amount of labelled data, and
access to a much bigger sample of raw text. The raw text contains a lot of
information about the language in general. Learning this general information
from the raw text can help your model use the smaller labelled data more
efficiently.
The two main ways to use raw text in your spaCy models are **word vectors** and
**language model pretraining**. Word vectors provide information about the
definitions of words. The vectors are a look-up table, so each word only has one
representation, regardless of its context. Language model pretraining lets you
learn contextualized word representations. Instead of initializing spaCy's
convolutional neural network layers with random weights, the `spacy pretrain`
command trains a language model to predict each word's word vector based on the
surrounding words. The information used to predict this task is a good starting
point for other tasks such as named entity recognition, text classification or
dependency parsing.
<Infobox title="📖 Vectors and pretraining">
For more details, see the documentation on
[vectors and similarity](/usage/vectors-similarity) and the
[`spacy pretrain`](/api/cli#pretrain) command.
</Infobox>
### How do I get training data? {#training-data}
Collecting training data may sound incredibly painful and it can be, if you're
planning a large-scale annotation project. However, if your main goal is to
update an existing model's predictions for example, spaCy's named entity
recognition the hard part is usually not creating the actual annotations. It's
finding representative examples and **extracting potential candidates**. The
good news is, if you've been noticing bad performance on your data, you likely
already have some relevant text, and you can use spaCy to **bootstrap a first
set of training examples**. For example, after processing a few sentences, you
may end up with the following entities, some correct, some incorrect.
> #### How many examples do I need?
>
> As a rule of thumb, you should allocate at least 10% of your project resources
> to creating training and evaluation data. If you're looking to improve an
> existing model, you might be able to start off with only a handful of
> examples. Keep in mind that you'll always want a lot more than that for
> **evaluation** especially previous errors the model has made. Otherwise, you
> won't be able to sufficiently verify that the model has actually made the
> **correct generalizations** required for your use case.
| Text |  Entity | Start | End | Label | |
| ---------------------------------- | ------- | ----- | ---- | -------- | --- |
| Uber blew through 1 million a week | Uber | `0` | `4` | `ORG` | ✅ |
| Android Pay expands to Canada | Android | `0` | `7` | `PERSON` | ❌ |
| Android Pay expands to Canada | Canada | `23` | `30` | `GPE` | ✅ |
| Spotify steps up Asia expansion | Spotify | `0` | `8` | `ORG` | ✅ |
| Spotify steps up Asia expansion | Asia | `17` | `21` | `NORP` | ❌ |
Alternatively, the [rule-based matcher](/usage/rule-based-matching) can be a
useful tool to extract tokens or combinations of tokens, as well as their start
and end index in a document. In this case, we'll extract mentions of Google and
assume they're an `ORG`.
| Text |  Entity | Start | End | Label | |
| ------------------------------------- | ------- | ----- | ---- | ----- | --- |
| let me google this for you | google | `7` | `13` | `ORG` | ❌ |
| Google Maps launches location sharing | Google | `0` | `6` | `ORG` | ❌ |
| Google rebrands its business apps | Google | `0` | `6` | `ORG` | ✅ |
| look what i found on google! 😂 | google | `21` | `27` | `ORG` | ✅ |
Based on the few examples above, you can already create six training sentences
with eight entities in total. Of course, what you consider a "correct
annotation" will always depend on **what you want the model to learn**. While
there are some entity annotations that are more or less universally correct
like Canada being a geopolitical entity your application may have its very own
definition of the [NER annotation scheme](/api/annotation#named-entities).
```python
train_data = [
("Uber blew through $1 million a week", [(0, 4, 'ORG')]),
("Android Pay expands to Canada", [(0, 11, 'PRODUCT'), (23, 30, 'GPE')]),
("Spotify steps up Asia expansion", [(0, 8, "ORG"), (17, 21, "LOC")]),
("Google Maps launches location sharing", [(0, 11, "PRODUCT")]),
("Google rebrands its business apps", [(0, 6, "ORG")]),
("look what i found on google! 😂", [(21, 27, "PRODUCT")])]
```
<Infobox title="Tip: Try the Prodigy annotation tool">
[![Prodigy: Radically efficient machine teaching](../images/prodigy.jpg)](https://prodi.gy)
@ -183,7 +31,154 @@ ready-to-use spaCy models.
</Infobox>
### Training with annotations {#annotations}
## Training CLI & config {#cli-config}
The recommended way to train your spaCy models is via the
[`spacy train`](/api/cli#train) command on the command line.
1. The **training data** in spaCy's binary format created using
[`spacy convert`](/api/cli#convert).
2. A `config.cfg` **configuration file** with all settings and hyperparameters.
3. An optional **Python file** to register
[custom models and architectures](#custom-models).
<!-- TODO: decide how we want to present the "getting started" workflow here, get a default config etc. -->
### Training data format {#data-format}
<!-- TODO: explain the new binary DocBin format -->
> #### Tip: Debug your data
>
> The [`debug-data` command](/api/cli#debug-data) lets you analyze and validate
> your training and development data, get useful stats, and find problems like
> invalid entity annotations, cyclic dependencies, low data labels and more.
>
> ```bash
> $ python -m spacy debug-data en train.json dev.json --verbose
> ```
<Accordion title="Understanding the training output">
When you train a model using the [`spacy train`](/api/cli#train) command, you'll
see a table showing metrics after each pass over the data. Here's what those
metrics means:
<!-- TODO: update table below with updated metrics if needed -->
| Name | Description |
| ---------- | ------------------------------------------------------------------------------------------------- |
| `Dep Loss` | Training loss for dependency parser. Should decrease, but usually not to 0. |
| `NER Loss` | Training loss for named entity recognizer. Should decrease, but usually not to 0. |
| `UAS` | Unlabeled attachment score for parser. The percentage of unlabeled correct arcs. Should increase. |
| `NER P.` | NER precision on development data. Should increase. |
| `NER R.` | NER recall on development data. Should increase. |
| `NER F.` | NER F-score on development data. Should increase. |
| `Tag %` | Fine-grained part-of-speech tag accuracy on development data. Should increase. |
| `Token %` | Tokenization accuracy on development data. |
| `CPU WPS` | Prediction speed on CPU in words per second, if available. Should stay stable. |
| `GPU WPS` | Prediction speed on GPU in words per second, if available. Should stay stable. |
Note that if the development data has raw text, some of the gold-standard
entities might not align to the predicted tokenization. These tokenization
errors are **excluded from the NER evaluation**. If your tokenization makes it
impossible for the model to predict 50% of your entities, your NER F-score might
still look good.
</Accordion>
---
### Training config files {#cli}
<!-- TODO: we need to come up with a good way to present the sections and their expected values visually? -->
<!-- TODO: instead of hard-coding a full config here, we probably want to embed it from GitHub, e.g. from one of the project templates. This also makes it easier to keep it up to date, and the embed widgets take up less space-->
```ini
[training]
use_gpu = -1
limit = 0
dropout = 0.2
patience = 1000
eval_frequency = 20
scores = ["ents_p", "ents_r", "ents_f"]
score_weights = {"ents_f": 1}
orth_variant_level = 0.0
gold_preproc = false
max_length = 0
seed = 0
accumulate_gradient = 1
discard_oversize = false
[training.batch_size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
[training.optimizer]
@optimizers = "Adam.v1"
learn_rate = 0.001
beta1 = 0.9
beta2 = 0.999
use_averages = false
[nlp]
lang = "en"
vectors = null
[nlp.pipeline.ner]
factory = "ner"
[nlp.pipeline.ner.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 3
hidden_width = 128
maxout_pieces = 3
use_upper = true
[nlp.pipeline.ner.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
width = 128
depth = 4
embed_size = 7000
maxout_pieces = 3
window_size = 1
subword_features = true
pretrained_vectors = null
dropout = null
```
### Model architectures {#model-architectures}
<!-- TODO: refer to architectures API: /api/architectures. This should document the architectures in spacy/ml/models -->
## Custom model implementations and architectures {#custom-models}
<!-- TODO: document some basic examples for custom models, refer to Thinc, refer to example config/project -->
### Training with custom code
<!-- TODO: document usage of spacy train with --code -->
## Transfer learning {#transfer-learning}
### Using transformer models like BERT {#transformers}
<!-- TODO: document usage of spacy-transformers, refer to example config/project -->
### Pretraining with spaCy {#pretraining}
<!-- TODO: document spacy pretrain -->
## Parallel Training with Ray {#parallel-training}
<!-- TODO: document Ray integration -->
## Internal training API {#api}
<!-- TODO: rewrite for new nlp.update / example logic -->
The [`GoldParse`](/api/goldparse) object collects the annotated training
examples, also called the **gold standard**. It's initialized with the
@ -234,12 +229,12 @@ it harder for the model to memorize the training data. For example, a `0.25`
dropout means that each feature or internal representation has a 1/4 likelihood
of being dropped.
> - [`begin_training()`](/api/language#begin_training): Start the training and
> - [`begin_training`](/api/language#begin_training): Start the training and
> return an optimizer function to update the model's weights. Can take an
> optional function converting the training data to spaCy's training format.
> - [`update()`](/api/language#update): Update the model with the training
> example and gold data.
> - [`to_disk()`](/api/language#to_disk): Save the updated model to a directory.
> - [`update`](/api/language#update): Update the model with the training example
> and gold data.
> - [`to_disk`](/api/language#to_disk): Save the updated model to a directory.
```python
### Example training loop
@ -265,525 +260,4 @@ The [`nlp.update`](/api/language#update) method takes the following arguments:
Instead of writing your own training loop, you can also use the built-in
[`train`](/api/cli#train) command, which expects data in spaCy's
[JSON format](/api/annotation#json-input). On each epoch, a model will be saved
out to the directory. After training, you can use the
[`package`](/api/cli#package) command to generate an installable Python package
from your model.
```bash
python -m spacy convert /tmp/train.conllu /tmp/data
python -m spacy train en /tmp/model /tmp/data/train.json -n 5
```
### Simple training style {#training-simple-style new="2"}
Instead of sequences of `Doc` and `GoldParse` objects, you can also use the
"simple training style" and pass **raw texts** and **dictionaries of
annotations** to [`nlp.update`](/api/language#update). The dictionaries can have
the keys `entities`, `heads`, `deps`, `tags` and `cats`. This is generally
recommended, as it removes one layer of abstraction, and avoids unnecessary
imports. It also makes it easier to structure and load your training data.
> #### Example Annotations
>
> ```python
> {
> "entities": [(0, 4, "ORG")],
> "heads": [1, 1, 1, 5, 5, 2, 7, 5],
> "deps": ["nsubj", "ROOT", "prt", "quantmod", "compound", "pobj", "det", "npadvmod"],
> "tags": ["PROPN", "VERB", "ADP", "SYM", "NUM", "NUM", "DET", "NOUN"],
> "cats": {"BUSINESS": 1.0},
> }
> ```
```python
### Simple training loop
TRAIN_DATA = [
("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]})]
nlp = spacy.blank("en")
optimizer = nlp.begin_training()
for i in range(20):
random.shuffle(TRAIN_DATA)
for text, annotations in TRAIN_DATA:
nlp.update([text], [annotations], sgd=optimizer)
nlp.to_disk("/model")
```
The above training loop leaves out a few details that can really improve
accuracy but the principle really is _that_ simple. Once you've got your
pipeline together and you want to tune the accuracy, you usually want to process
your training examples in batches, and experiment with
[`minibatch`](/api/top-level#util.minibatch) sizes and dropout rates, set via
the `drop` keyword argument. See the [`Language`](/api/language) and
[`Pipe`](/api/pipe) API docs for available options.
## Training the named entity recognizer {#ner}
All [spaCy models](/models) support online learning, so you can update a
pretrained model with new examples. You'll usually need to provide many
**examples** to meaningfully improve the system — a few hundred is a good start,
although more is better.
You should avoid iterating over the same few examples multiple times, or the
model is likely to "forget" how to annotate other examples. If you iterate over
the same few examples, you're effectively changing the loss function. The
optimizer will find a way to minimize the loss on your examples, without regard
for the consequences on the examples it's no longer paying attention to. One way
to avoid this
["catastrophic forgetting" problem](https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting)
is to "remind" the model of other examples by augmenting your annotations with
sentences annotated with entities automatically recognized by the original
model. Ultimately, this is an empirical process: you'll need to **experiment on
your data** to find a solution that works best for you.
> #### Tip: Converting entity annotations
>
> You can train the entity recognizer with entity offsets or annotations in the
> [BILUO scheme](/api/annotation#biluo). The `spacy.gold` module also exposes
> [two helper functions](/api/goldparse#util) to convert offsets to BILUO tags,
> and BILUO tags to entity offsets.
### Updating the Named Entity Recognizer {#example-train-ner}
This example shows how to update spaCy's entity recognizer with your own
examples, starting off with an existing, pretrained model, or from scratch using
a blank `Language` class. To do this, you'll need **example texts** and the
**character offsets** and **labels** of each entity contained in the texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_ner.py
```
#### Step by step guide {#step-by-step-ner}
1. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using a blank model, don't forget to add the entity recognizer to the
pipeline. If you're using an existing model, make sure to disable all other
pipeline components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the entity recognizer.
2. **Shuffle and loop over** the examples. For each example, **update the
model** by calling [`nlp.update`](/api/language#update), which steps through
the words of the input. At each word, it makes a **prediction**. It then
consults the annotations to see whether it was right. If it was wrong, it
adjusts its weights so that the correct action will score higher next time.
3. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
4. **Test** the model to make sure the entities in the training data are
recognized correctly.
### Training an additional entity type {#example-new-entity-type}
This script shows how to add a new entity type `ANIMAL` to an existing
pretrained NER model, or an empty `Language` class. To keep the example short
and simple, only a few sentences are provided as examples. In practice, you'll
need many more — a few hundred would be a good start. You will also likely need
to mix in examples of other entity types, which might be obtained by running the
entity recognizer over unlabelled sentences, and adding their annotations to the
training set.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_new_entity_type.py
```
<Infobox title="Important note" variant="warning">
If you're using an existing model, make sure to mix in examples of **other
entity types** that spaCy correctly recognized before. Otherwise, your model
might learn the new type, but "forget" what it previously knew. This is also
referred to as the "catastrophic forgetting" problem.
</Infobox>
#### Step by step guide {#step-by-step-ner-new}
1. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using a blank model, don't forget to add the entity recognizer to the
pipeline. If you're using an existing model, make sure to disable all other
pipeline components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the entity recognizer.
2. **Add the new entity label** to the entity recognizer using the
[`add_label`](/api/entityrecognizer#add_label) method. You can access the
entity recognizer in the pipeline via `nlp.get_pipe('ner')`.
3. **Loop over** the examples and call [`nlp.update`](/api/language#update),
which steps through the words of the input. At each word, it makes a
**prediction**. It then consults the annotations, to see whether it was
right. If it was wrong, it adjusts its weights so that the correct action
will score higher next time.
4. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
5. **Test** the model to make sure the new entity is recognized correctly.
## Training the tagger and parser {#tagger-parser}
### Updating the Dependency Parser {#example-train-parser}
This example shows how to train spaCy's dependency parser, starting off with an
existing model or a blank model. You'll need a set of **training examples** and
the respective **heads** and **dependency label** for each token of the example
texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_parser.py
```
#### Step by step guide {#step-by-step-parser}
1. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using a blank model, don't forget to add the parser to the pipeline.
If you're using an existing model, make sure to disable all other pipeline
components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the parser.
2. **Add the dependency labels** to the parser using the
[`add_label`](/api/dependencyparser#add_label) method. If you're starting off
with a pretrained spaCy model, this is usually not necessary but it doesn't
hurt either, just to be safe.
3. **Shuffle and loop over** the examples. For each example, **update the
model** by calling [`nlp.update`](/api/language#update), which steps through
the words of the input. At each word, it makes a **prediction**. It then
consults the annotations to see whether it was right. If it was wrong, it
adjusts its weights so that the correct action will score higher next time.
4. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
5. **Test** the model to make sure the parser works as expected.
### Updating the Part-of-speech Tagger {#example-train-tagger}
In this example, we're training spaCy's part-of-speech tagger with a custom tag
map. We start off with a blank `Language` class, update its defaults with our
custom tags and then train the tagger. You'll need a set of **training
examples** and the respective **custom tags**, as well as a dictionary mapping
those tags to the
[Universal Dependencies scheme](http://universaldependencies.github.io/docs/u/pos/index.html).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_tagger.py
```
#### Step by step guide {#step-by-step-tagger}
1. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using a blank model, don't forget to add the tagger to the pipeline.
If you're using an existing model, make sure to disable all other pipeline
components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the tagger.
2. **Add the tag map** to the tagger using the
[`add_label`](/api/tagger#add_label) method. The first argument is the new
tag name, the second the mapping to spaCy's coarse-grained tags, e.g.
`{'pos': 'NOUN'}`.
3. **Shuffle and loop over** the examples. For each example, **update the
model** by calling [`nlp.update`](/api/language#update), which steps through
the words of the input. At each word, it makes a **prediction**. It then
consults the annotations to see whether it was right. If it was wrong, it
adjusts its weights so that the correct action will score higher next time.
4. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
5. **Test** the model to make sure the parser works as expected.
### Training a parser for custom semantics {#intent-parser}
spaCy's parser component can be used to be trained to predict any type of tree
structure over your input text  including **semantic relations** that are not
syntactic dependencies. This can be useful to for **conversational
applications**, which need to predict trees over whole documents or chat logs,
with connections between the sentence roots used to annotate discourse
structure. For example, you can train spaCy's parser to label intents and their
targets, like attributes, quality, time and locations. The result could look
like this:
![Custom dependencies](../images/displacy-custom-parser.svg)
```python
doc = nlp("find a hotel with good wifi")
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
# [('find', 'ROOT', 'find'), ('hotel', 'PLACE', 'find'),
# ('good', 'QUALITY', 'wifi'), ('wifi', 'ATTRIBUTE', 'hotel')]
```
The above tree attaches "wifi" to "hotel" and assigns the dependency label
`ATTRIBUTE`. This may not be a correct syntactic dependency but in this case,
it expresses exactly what we need: the user is looking for a hotel with the
attribute "wifi" of the quality "good". This query can then be processed by your
application and used to trigger the respective action e.g. search the database
for hotels with high ratings for their wifi offerings.
> #### Tip: merge phrases and entities
>
> To achieve even better accuracy, try merging multi-word tokens and entities
> specific to your domain into one token before parsing your text. You can do
> this by running the entity recognizer or
> [rule-based matcher](/usage/rule-based-matching) to find relevant spans, and
> merging them using [`Doc.retokenize`](/api/doc#retokenize). You could even add
> your own custom
> [pipeline component](/usage/processing-pipelines#custom-components) to do this
> automatically just make sure to add it `before='parser'`.
The following example shows a full implementation of a training loop for a
custom message parser for a common "chat intent": finding local businesses. Our
message semantics will have the following types of relations: `ROOT`, `PLACE`,
`QUALITY`, `ATTRIBUTE`, `TIME` and `LOCATION`.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_intent_parser.py
```
#### Step by step guide {#step-by-step-parser-custom}
1. **Create the training data** consisting of words, their heads and their
dependency labels in order. A token's head is the index of the token it is
attached to. The heads don't need to be syntactically correct they should
express the **semantic relations** you want the parser to learn. For words
that shouldn't receive a label, you can choose an arbitrary placeholder, for
example `-`.
2. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using a blank model, don't forget to add the custom parser to the
pipeline. If you're using an existing model, make sure to **remove the old
parser** from the pipeline, and disable all other pipeline components during
training using [`nlp.select_pipes`](/api/language#select_pipes). This way,
you'll only be training the parser.
3. **Add the dependency labels** to the parser using the
[`add_label`](/api/dependencyparser#add_label) method.
4. **Shuffle and loop over** the examples. For each example, **update the
model** by calling [`nlp.update`](/api/language#update), which steps through
the words of the input. At each word, it makes a **prediction**. It then
consults the annotations to see whether it was right. If it was wrong, it
adjusts its weights so that the correct action will score higher next time.
5. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
6. **Test** the model to make sure the parser works as expected.
## Training a text classification model {#textcat}
### Adding a text classifier to a spaCy model {#example-textcat new="2"}
This example shows how to train a convolutional neural network text classifier
on IMDB movie reviews, using spaCy's new
[`TextCategorizer`](/api/textcategorizer) component. The dataset will be loaded
automatically via Thinc's built-in dataset loader. Predictions are available via
[`Doc.cats`](/api/doc#attributes).
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_textcat.py
```
#### Step by step guide {#step-by-step-textcat}
1. **Load the model** you want to start with, or create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. If
you're using an existing model, make sure to disable all other pipeline
components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the text classifier.
2. **Add the text classifier** to the pipeline, and add the labels you want to
train for example, `POSITIVE`.
3. **Load and pre-process the dataset**, shuffle the data and split off a part
of it to hold back for evaluation. This way, you'll be able to see results on
each training iteration.
4. **Loop over** the training examples and partition them into batches using
spaCy's [`minibatch`](/api/top-level#util.minibatch) and
[`compounding`](/api/top-level#util.compounding) helpers.
5. **Update the model** by calling [`nlp.update`](/api/language#update), which
steps through the examples and makes a **prediction**. It then consults the
annotations to see whether it was right. If it was wrong, it adjusts its
weights so that the correct prediction will score higher next time.
6. Optionally, you can also **evaluate the text classifier** on each iteration,
by checking how it performs on the development data held back from the
dataset. This lets you print the **precision**, **recall** and **F-score**.
7. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
8. **Test** the model to make sure the text classifier works as expected.
## Entity linking {#entity-linker}
To train an entity linking model, you first need to define a knowledge base
(KB).
### Creating a knowledge base {#kb}
A KB consists of a list of entities with unique identifiers. Each such entity
has an entity vector that will be used to measure similarity with the context in
which an entity is used. These vectors have a fixed length and are stored in the
KB.
The following example shows how to build a knowledge base from scratch, given a
list of entities and potential aliases. The script requires an `nlp` model with
pretrained word vectors to obtain an encoding of an entity's description as its
vector.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/create_kb.py
```
#### Step by step guide {#step-by-step-kb}
1. **Load the model** you want to start with. It should contain pretrained word
vectors.
2. **Obtain the entity embeddings** by running the descriptions of the entities
through the `nlp` model and taking the average of all words with
`nlp(desc).vector`. At this point, a custom encoding step can also be used.
3. **Construct the KB** by defining all entities with their embeddings, and all
aliases with their prior probabilities.
4. **Save** the KB using [`kb.dump`](/api/kb#dump).
5. **Print** the contents of the KB to make sure the entities were added
correctly.
### Training an entity linking model {#entity-linker-model}
This example shows how to create an entity linker pipe using a previously
created knowledge base. The entity linker is then trained with a set of custom
examples. To do so, you need to provide **example texts**, and the **character
offsets** and **knowledge base identifiers** of each entity contained in the
texts.
```python
https://github.com/explosion/spaCy/tree/master/examples/training/train_entity_linker.py
```
#### Step by step guide {#step-by-step-entity-linker}
1. **Load the KB** you want to start with, and specify the path to the `Vocab`
object that was used to create this KB. Then, create an **empty model** using
[`spacy.blank`](/api/top-level#spacy.blank) with the ID of your language. Add
a component for recognizing sentences en one for identifying relevant
entities. In practical applications, you will want a more advanced pipeline
including also a component for
[named entity recognition](/usage/training#ner). Then, create a new entity
linker component, add the KB to it, and then add the entity linker to the
pipeline. If you're using a model with additional components, make sure to
disable all other pipeline components during training using
[`nlp.select_pipes`](/api/language#select_pipes). This way, you'll only be
training the entity linker.
2. **Shuffle and loop over** the examples. For each example, **update the
model** by calling [`nlp.update`](/api/language#update), which steps through
the annotated examples of the input. For each combination of a mention in
text and a potential KB identifier, the model makes a **prediction** whether
or not this is the correct match. It then consults the annotations to see
whether it was right. If it was wrong, it adjusts its weights so that the
correct combination will score higher next time.
3. **Save** the trained model using [`nlp.to_disk`](/api/language#to_disk).
4. **Test** the model to make sure the entities in the training data are
recognized correctly.
## Optimization tips and advice {#tips}
There are lots of conflicting "recipes" for training deep neural networks at the
moment. The cutting-edge models take a very long time to train, so most
researchers can't run enough experiments to figure out what's _really_ going on.
For what it's worth, here's a recipe that seems to work well on a lot of NLP
problems:
1. Initialize with batch size 1, and compound to a maximum determined by your
data size and problem type.
2. Use Adam solver with fixed learning rate.
3. Use averaged parameters
4. Use L2 regularization.
5. Clip gradients by L2 norm to 1.
6. On small data sizes, start at a high dropout rate, with linear decay.
This recipe has been cobbled together experimentally. Here's why the various
elements of the recipe made enough sense to try initially, and what you might
try changing, depending on your problem.
### Compounding batch size {#tips-batch-size}
The trick of increasing the batch size is starting to become quite popular (see
[Smith et al., 2017](https://arxiv.org/abs/1711.00489)). Their recipe is quite
different from how spaCy's models are being trained, but there are some
similarities. In training the various spaCy models, we haven't found much
advantage from decaying the learning rate but starting with a low batch size
has definitely helped. You should try it out on your data, and see how you go.
Here's our current strategy:
```python
### Batch heuristic
def get_batches(train_data, model_type):
max_batch_sizes = {"tagger": 32, "parser": 16, "ner": 16, "textcat": 64}
max_batch_size = max_batch_sizes[model_type]
if len(train_data) < 1000:
max_batch_size /= 2
if len(train_data) < 500:
max_batch_size /= 2
batch_size = compounding(1, max_batch_size, 1.001)
batches = minibatch(train_data, size=batch_size)
return batches
```
This will set the batch size to start at `1`, and increase each batch until it
reaches a maximum size. The tagger, parser and entity recognizer all take whole
sentences as input, so they're learning a lot of labels in a single example. You
therefore need smaller batches for them. The batch size for the text categorizer
should be somewhat larger, especially if your documents are long.
### Learning rate, regularization and gradient clipping {#tips-hyperparams}
By default spaCy uses the Adam solver, with default settings
(`learn_rate=0.001`, `beta1=0.9`, `beta2=0.999`). Some researchers have said
they found these settings terrible on their problems but they've always
performed very well in training spaCy's models, in combination with the rest of
our recipe. You can change these settings directly, by modifying the
corresponding attributes on the `optimizer` object. You can also set environment
variables, to adjust the defaults.
There are two other key hyper-parameters of the solver: `L2` **regularization**,
and **gradient clipping** (`max_grad_norm`). Gradient clipping is a hack that's
not discussed often, but everybody seems to be using. It's quite important in
helping to ensure the network doesn't diverge, which is a fancy way of saying
"fall over during training". The effect is sort of similar to setting the
learning rate low. It can also compensate for a large batch size (this is a good
example of how the choices of all these hyper-parameters intersect).
### Dropout rate {#tips-dropout}
For small datasets, it's useful to set a **high dropout rate at first**, and
**decay** it down towards a more reasonable value. This helps avoid the network
immediately overfitting, while still encouraging it to learn some of the more
interesting things in your data. spaCy comes with a
[`decaying`](/api/top-level#util.decaying) utility function to facilitate this.
You might try setting:
```python
from spacy.util import decaying
dropout = decaying(0.6, 0.2, 1e-4)
```
You can then draw values from the iterator with `next(dropout)`, which you would
pass to the `drop` keyword argument of [`nlp.update`](/api/language#update).
It's pretty much always a good idea to use at least **some dropout**. All of the
models currently use Bernoulli dropout, for no particularly principled reason
we just haven't experimented with another scheme like Gaussian dropout yet.
### Parameter averaging {#tips-param-avg}
The last part of our optimization recipe is **parameter averaging**, an old
trick introduced by
[Freund and Schapire (1999)](https://cseweb.ucsd.edu/~yfreund/papers/LargeMarginsUsingPerceptron.pdf),
popularized in the NLP community by
[Collins (2002)](http://www.aclweb.org/anthology/P04-1015), and explained in
more detail by [Leon Bottou](http://leon.bottou.org/projects/sgd). Just about
the only other people who seem to be using this for neural network training are
the SyntaxNet team (one of whom is Michael Collins) but it really seems to
work great on every problem.
The trick is to store the moving average of the weights during training. We
don't optimize this average we just track it. Then when we want to actually
use the model, we use the averages, not the most recent value. In spaCy (and
[Thinc](https://github.com/explosion/thinc)) this is done by using a context
manager, [`use_params`](/api/language#use_params), to temporarily replace the
weights:
```python
with nlp.use_params(optimizer.averages):
nlp.to_disk("/model")
```
The context manager is handy because you naturally want to evaluate and save the
model at various points during training (e.g. after each epoch). After
evaluating and saving, the context manager will exit and the weights will be
restored, so you resume training from the most recent value, rather than the
average. By evaluating the model after each epoch, you can remove one
hyper-parameter from consideration (the number of epochs). Having one less magic
number to guess is extremely nice so having the averaging under a context
manager is very convenient.
out to the directory.

View File

@ -19,7 +19,7 @@
{ "text": "Rule-based Matching", "url": "/usage/rule-based-matching" },
{ "text": "Processing Pipelines", "url": "/usage/processing-pipelines" },
{ "text": "Vectors & Similarity", "url": "/usage/vectors-similarity" },
{ "text": "Training Models", "url": "/usage/training" },
{ "text": "Training Models", "url": "/usage/training", "tag": "new" },
{ "text": "spaCy Projects", "url": "/usage/projects", "tag": "new" },
{ "text": "Saving & Loading", "url": "/usage/saving-loading" },
{ "text": "Visualizers", "url": "/usage/visualizers" }
@ -54,7 +54,8 @@
{
"label": "Overview",
"items": [
{ "text": "Architecture", "url": "/api" },
{ "text": "Library Architecture", "url": "/api" },
{ "text": "Model Architectures", "url": "/api/architectures" },
{ "text": "Annotation Specs", "url": "/api/annotation" },
{ "text": "Command Line", "url": "/api/cli" },
{ "text": "Functions", "url": "/api/top-level" }
@ -67,7 +68,8 @@
{ "text": "Token", "url": "/api/token" },
{ "text": "Span", "url": "/api/span" },
{ "text": "Lexeme", "url": "/api/lexeme" },
{ "text": "Example", "url": "/api/example" }
{ "text": "Example", "url": "/api/example" },
{ "text": "DocBin", "url": "/api/docbin" }
]
},
{
@ -85,6 +87,7 @@
{ "text": "PhraseMatcher", "url": "/api/phrasematcher" },
{ "text": "EntityRuler", "url": "/api/entityruler" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Other Functions", "url": "/api/pipeline-functions" }
]
},
@ -96,10 +99,8 @@
{ "text": "Vectors", "url": "/api/vectors" },
{ "text": "Lookups", "url": "/api/lookups" },
{ "text": "KnowledgeBase", "url": "/api/kb" },
{ "text": "GoldParse", "url": "/api/goldparse" },
{ "text": "GoldCorpus", "url": "/api/goldcorpus" },
{ "text": "Scorer", "url": "/api/scorer" },
{ "text": "DocBin", "url": "/api/docbin" }
{ "text": "Corpus", "url": "/api/corpus" }
]
},
{

View File

@ -83,12 +83,13 @@ export class Code extends React.Component {
executable,
github,
prompt,
wrap,
highlight,
className,
children,
} = this.props
const codeClassNames = classNames(classes.code, className, `language-${lang}`, {
[classes.wrap]: !!highlight,
[classes.wrap]: !!highlight || !!wrap,
})
const ghClassNames = classNames(codeClassNames, classes.maxHeight)
const { Juniper } = this.state

View File

@ -321,20 +321,20 @@ body [id]:target
&.comment, &.prolog, &.doctype, &.cdata, &.punctuation
color: var(--syntax-comment)
&.property, &.tag, &.constant, &.symbol
&.property, &.tag, &.symbol
color: var(--syntax-tag)
&.boolean, &.number
color: var(--syntax-number)
&.selector, &.attr-name, &.string, &.char, &.builtin
&.attr-name, &.string, &.char, &.builtin, &.attr-value
color: var(--syntax-selector)
@at-root .language-css .token.string,
&.operator, &.entity, &.url, &.variable
color: var(--syntax-operator)
&.atrule, &.attr-value, &.function
&.atrule, &.function, &.selector
color: var(--syntax-function)
&.regex, &.important
@ -395,13 +395,13 @@ body [id]:target
.cm-comment
color: var(--syntax-comment)
.cm-keyword, .cm-builtin
.cm-keyword
color: var(--syntax-keyword)
.cm-operator
color: var(--syntax-operator)
.cm-string
.cm-string, .cm-builtin
color: var(--syntax-selector)
.cm-number

View File

@ -83,7 +83,7 @@ const QuickstartInstall = ({ id, title }) => (
export PYTHONPATH=`pwd`
</QS>
<QS package="source" os="windows">
set PYTHONPATH=/path/to/spaCy
set PYTHONPATH=C:\path\to\spaCy
</QS>
<QS package="source">pip install -r requirements.txt</QS>
<QS data="lookups" package="pip">