diff --git a/spacy/serialize.pyx b/spacy/serialize.pyx index 6435ae876..2f6e38e01 100644 --- a/spacy/serialize.pyx +++ b/spacy/serialize.pyx @@ -8,6 +8,20 @@ import numpy cimport cython +#cdef class Serializer: +# def __init__(self, Vocab vocab): +# pass +# +# def dump(self, Doc tokens, file_): +# pass +# # Format +# # - Total number of bytes in message (32 bit int) +# # - Words, terminating in an EOL symbol, huffman coded ~12 bits per word +# # - Spaces ~1 bit per word +# # - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag +# # combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab + + cdef struct Node: float prob int left @@ -19,44 +33,109 @@ cdef struct Code: int length +cdef class HuffmanCodec: + cdef vector[Node] nodes + cdef vector[Code] codes + cdef float[:] probs + cdef dict table + def __init__(self, symbols, probs): + self.table = {} + for i, symbol in enumerate(symbols): + self.table[symbol] = i + self.probs = probs + self.codes.resize(len(probs)) + + populate_nodes(self.nodes, probs) + assign_codes(self.nodes, self.codes, len(self.nodes) - 1, b'') + + def encode(self, sequence): + bits = [] + for symbol in sequence: + i = self.table[symbol] + code = self.codes[i] + bits.extend(code) + return bits + + def decode(self, bits): + symbols = [] + node = self.nodes.back() + for bit in bits: + branch = node.right if bit else node.left + if branch >= 0: + node = self.nodes.at(branch) + else: + symbols.append(-(branch + 1)) + node = self.nodes.back() + return symbols + + property strings: + def __get__(self): + output = [] + for i in range(len(self.codes)): + string = '{0:b}'.format(self.codes[i].bits).rjust(self.codes[i].length, '0') + output.append(string) + return output + + @cython.boundscheck(False) @cython.wraparound(False) @cython.nonecheck(False) -cpdef list huffman_encode(float[:] probs): +cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1: assert len(probs) >= 3 - - output = numpy.zeros(shape=(len(probs),), dtype=numpy.uint64) - cdef int size = len(probs) - cdef vector[Node] nodes cdef int i = size - 1 cdef int j = 0 while i >= 0 or (j+1) < nodes.size(): if i < 0: - cover_two_nodes(nodes, j) + _cover_two_nodes(nodes, j) j += 2 elif j >= nodes.size(): - cover_two_words(nodes, i, i-1, probs[i]+probs[i-1]) + _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob): - cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) + _cover_two_words(nodes, i, i-1, probs[i] + probs[i-1]) i -= 2 elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]: - cover_two_nodes(nodes, j) + _cover_two_nodes(nodes, j) j += 2 else: - cover_one_word_one_node(nodes, j, i, probs[i]) + _cover_one_word_one_node(nodes, j, i, probs[i]) i -= 1 j += 1 - cdef vector[Code] codes - codes.resize(len(probs)) - assign_codes(nodes, codes, len(nodes) - 1, b'') - output = [] - for i in range(len(codes)): - out_str = '{0:b}'.format(codes[i].bits).rjust(codes[i].length, '0') - output.append(out_str) - return output + return 0 + +cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil: + cdef Node node + node.left = j + node.right = j+1 + node.prob = nodes[j].prob + nodes[j+1].prob + nodes.push_back(node) + + +cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil: + cdef Node node + # Encode leaves as negative integers, where the integer is the index of the + # word in the vocabulary. + cdef int64_t leaf_id = - (id_ + 1) + cdef float new_prob = prob + nodes[j].prob + if prob < nodes[j].prob: + node.left = leaf_id + node.right = j + node.prob = new_prob + else: + node.left = j + node.right = leaf_id + node.prob = new_prob + nodes.push_back(node) + + +cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil: + cdef Node node + node.left = -(id1+1) + node.right = -(id2+1) + node.prob = prob + nodes.push_back(node) cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, bytes path) except -1: @@ -78,36 +157,3 @@ cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, bytes pat id_ = -(nodes[i].right + 1) codes[id_].length = len(right_path) codes[id_].bits = int(right_path, 2) - - -cdef int cover_two_nodes(vector[Node]& nodes, int j) nogil: - cdef Node node - node.left = j - node.right = j+1 - node.prob = nodes[j].prob + nodes[j+1].prob - nodes.push_back(node) - - -cdef int cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil: - cdef Node node - # Encode leaves as negative integers, where the integer is the index of the - # word in the vocabulary. - cdef int64_t leaf_id = - (id_ + 1) - cdef float new_prob = prob + nodes[j].prob - if prob < nodes[j].prob: - node.left = leaf_id - node.right = j - node.prob = new_prob - else: - node.left = j - node.right = leaf_id - node.prob = new_prob - nodes.push_back(node) - - -cdef int cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil: - cdef Node node - node.left = -(id1+1) - node.right = -(id2+1) - node.prob = prob - nodes.push_back(node)