Add support for jsonl-formatted lexical attributes to init-model command.

This commit is contained in:
Matthew Honnibal 2018-07-03 12:22:56 +02:00
parent 46d8a66fef
commit 6a89faf12e

View File

@ -11,6 +11,8 @@ from preshed.counter import PreshCounter
import tarfile
import gzip
import zipfile
import ujson as json
from spacy.lexeme import intify_attrs
from ._messages import Messages
from ..vectors import Vectors
@ -26,7 +28,8 @@ except ImportError:
@plac.annotations(
lang=("model language", "positional", None, str),
output_dir=("model output directory", "positional", None, Path),
freqs_loc=("location of words frequencies file", "positional", None, Path),
freqs_loc=("location of words frequencies file", "optional", "f", Path),
jsonl_loc=("location of JSONL-formatted attributes file", "optional", "j", Path),
clusters_loc=("optional: location of brown clusters data",
"option", "c", str),
vectors_loc=("optional: location of vectors file in Word2Vec format "
@ -35,20 +38,37 @@ except ImportError:
prune_vectors=("optional: number of vectors to prune to",
"option", "V", int)
)
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None,
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, jsonl_loc=None,
vectors_loc=None, prune_vectors=-1):
"""
Create a new model from raw data, like word frequencies, Brown clusters
and word vectors.
"""
if freqs_loc is not None and not freqs_loc.exists():
prints(freqs_loc, title=Messages.M037, exits=1)
clusters_loc = ensure_path(clusters_loc)
if jsonl_loc is not None:
if freqs_loc is not None or clusters_loc is not None:
settings = ['-j']
if freqs_loc:
settings.append('-f')
if clusters_loc:
settings.append('-c')
prints(' '.join(settings),
title=(
"The -f and -c arguments are deprecated, and not compatible "
"with the -j argument, which should specify the same information. "
"Either merge the frequencies and clusters data into the "
"jsonl-formatted file (recommended), or use only the -f and "
"-c files, without the other lexical attributes."))
jsonl_loc = ensure_path(jsonl_loc)
lex_attrs = (json.loads(line) for line in jsonl_loc.open())
else:
clusters_loc = ensure_path(clusters_loc)
freqs_loc = ensure_path(freqs_loc)
if freqs_loc is not None and not freqs_loc.exists():
prints(freqs_loc, title=Messages.M037, exits=1)
lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
vectors_loc = ensure_path(vectors_loc)
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
clusters = read_clusters(clusters_loc) if clusters_loc else {}
nlp = create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors)
nlp = create_model(lang, lex_attrs, vectors_data, vector_keys, prune_vectors)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
@ -70,26 +90,38 @@ def open_file(loc):
else:
return loc.open('r', encoding='utf8')
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
def read_attrs_from_deprecated(freqs_loc, clusters_loc):
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
clusters = read_clusters(clusters_loc) if clusters_loc else {}
lex_attrs = {}
sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
for i, (word, prob) in tqdm(enumerate(sorted_probs)):
attrs = {'orth': word, 'rank': i, 'prob': prob}
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
attrs['cluster'] = int(clusters[word][::-1], 2)
else:
attrs['cluster'] = 0
lex_attrs.append(attrs)
return lex_attrs
def create_model(lang, lex_attrs, vectors_data, vector_keys, prune_vectors):
print("Creating model...")
lang_class = get_lang_class(lang)
nlp = lang_class()
for lexeme in nlp.vocab:
lexeme.rank = 0
lex_added = 0
for i, (word, prob) in enumerate(tqdm(sorted(probs.items(), key=lambda item: item[1], reverse=True))):
lexeme = nlp.vocab[word]
lexeme.rank = i
lexeme.prob = prob
for attrs in lex_attrs:
lexeme = nlp.vocab[attrs['orth']]
lexeme.set_attrs(**intify_attrs(attrs))
lexeme.is_oov = False
# Decode as a little-endian string, so that we can do & 15 to get
# the first 4 bits. See _parse_features.pyx
if word in clusters:
lexeme.cluster = int(clusters[word][::-1], 2)
else:
lexeme.cluster = 0
lex_added += 1
nlp.vocab.cfg.update({'oov_prob': oov_prob})
lex_added += 1
oov_prob = min(lex.prob for lex in nlp.vocab)
nlp.vocab.cfg.update({'oov_prob': oov_prob-1})
if vector_keys is not None:
for word in vector_keys:
if word not in nlp.vocab: