mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Add support for jsonl-formatted lexical attributes to init-model command.
This commit is contained in:
parent
46d8a66fef
commit
6a89faf12e
|
@ -11,6 +11,8 @@ from preshed.counter import PreshCounter
|
|||
import tarfile
|
||||
import gzip
|
||||
import zipfile
|
||||
import ujson as json
|
||||
from spacy.lexeme import intify_attrs
|
||||
|
||||
from ._messages import Messages
|
||||
from ..vectors import Vectors
|
||||
|
@ -26,7 +28,8 @@ except ImportError:
|
|||
@plac.annotations(
|
||||
lang=("model language", "positional", None, str),
|
||||
output_dir=("model output directory", "positional", None, Path),
|
||||
freqs_loc=("location of words frequencies file", "positional", None, Path),
|
||||
freqs_loc=("location of words frequencies file", "optional", "f", Path),
|
||||
jsonl_loc=("location of JSONL-formatted attributes file", "optional", "j", Path),
|
||||
clusters_loc=("optional: location of brown clusters data",
|
||||
"option", "c", str),
|
||||
vectors_loc=("optional: location of vectors file in Word2Vec format "
|
||||
|
@ -35,20 +38,37 @@ except ImportError:
|
|||
prune_vectors=("optional: number of vectors to prune to",
|
||||
"option", "V", int)
|
||||
)
|
||||
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None,
|
||||
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, jsonl_loc=None,
|
||||
vectors_loc=None, prune_vectors=-1):
|
||||
"""
|
||||
Create a new model from raw data, like word frequencies, Brown clusters
|
||||
and word vectors.
|
||||
"""
|
||||
if jsonl_loc is not None:
|
||||
if freqs_loc is not None or clusters_loc is not None:
|
||||
settings = ['-j']
|
||||
if freqs_loc:
|
||||
settings.append('-f')
|
||||
if clusters_loc:
|
||||
settings.append('-c')
|
||||
prints(' '.join(settings),
|
||||
title=(
|
||||
"The -f and -c arguments are deprecated, and not compatible "
|
||||
"with the -j argument, which should specify the same information. "
|
||||
"Either merge the frequencies and clusters data into the "
|
||||
"jsonl-formatted file (recommended), or use only the -f and "
|
||||
"-c files, without the other lexical attributes."))
|
||||
jsonl_loc = ensure_path(jsonl_loc)
|
||||
lex_attrs = (json.loads(line) for line in jsonl_loc.open())
|
||||
else:
|
||||
clusters_loc = ensure_path(clusters_loc)
|
||||
freqs_loc = ensure_path(freqs_loc)
|
||||
if freqs_loc is not None and not freqs_loc.exists():
|
||||
prints(freqs_loc, title=Messages.M037, exits=1)
|
||||
clusters_loc = ensure_path(clusters_loc)
|
||||
lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
|
||||
vectors_loc = ensure_path(vectors_loc)
|
||||
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
|
||||
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
|
||||
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
||||
nlp = create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors)
|
||||
nlp = create_model(lang, lex_attrs, vectors_data, vector_keys, prune_vectors)
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
nlp.to_disk(output_dir)
|
||||
|
@ -70,26 +90,38 @@ def open_file(loc):
|
|||
else:
|
||||
return loc.open('r', encoding='utf8')
|
||||
|
||||
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
|
||||
def read_attrs_from_deprecated(freqs_loc, clusters_loc):
|
||||
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
|
||||
clusters = read_clusters(clusters_loc) if clusters_loc else {}
|
||||
lex_attrs = {}
|
||||
sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
|
||||
for i, (word, prob) in tqdm(enumerate(sorted_probs)):
|
||||
attrs = {'orth': word, 'rank': i, 'prob': prob}
|
||||
# Decode as a little-endian string, so that we can do & 15 to get
|
||||
# the first 4 bits. See _parse_features.pyx
|
||||
if word in clusters:
|
||||
attrs['cluster'] = int(clusters[word][::-1], 2)
|
||||
else:
|
||||
attrs['cluster'] = 0
|
||||
lex_attrs.append(attrs)
|
||||
return lex_attrs
|
||||
|
||||
|
||||
def create_model(lang, lex_attrs, vectors_data, vector_keys, prune_vectors):
|
||||
print("Creating model...")
|
||||
lang_class = get_lang_class(lang)
|
||||
nlp = lang_class()
|
||||
for lexeme in nlp.vocab:
|
||||
lexeme.rank = 0
|
||||
lex_added = 0
|
||||
for i, (word, prob) in enumerate(tqdm(sorted(probs.items(), key=lambda item: item[1], reverse=True))):
|
||||
lexeme = nlp.vocab[word]
|
||||
lexeme.rank = i
|
||||
lexeme.prob = prob
|
||||
for attrs in lex_attrs:
|
||||
lexeme = nlp.vocab[attrs['orth']]
|
||||
lexeme.set_attrs(**intify_attrs(attrs))
|
||||
lexeme.is_oov = False
|
||||
# Decode as a little-endian string, so that we can do & 15 to get
|
||||
# the first 4 bits. See _parse_features.pyx
|
||||
if word in clusters:
|
||||
lexeme.cluster = int(clusters[word][::-1], 2)
|
||||
else:
|
||||
lexeme.cluster = 0
|
||||
lex_added += 1
|
||||
nlp.vocab.cfg.update({'oov_prob': oov_prob})
|
||||
lex_added += 1
|
||||
oov_prob = min(lex.prob for lex in nlp.vocab)
|
||||
nlp.vocab.cfg.update({'oov_prob': oov_prob-1})
|
||||
if vector_keys is not None:
|
||||
for word in vector_keys:
|
||||
if word not in nlp.vocab:
|
||||
|
|
Loading…
Reference in New Issue
Block a user