mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
More work on beam parser.
This commit is contained in:
parent
1ee6b468a9
commit
6a98a3142f
|
@ -1,6 +1,7 @@
|
|||
# cython: profile=True
|
||||
# cython: experimental_cpp_class_def=True
|
||||
# cython: cdivision=True
|
||||
# cython: infer_types=True
|
||||
"""
|
||||
MALT-style dependency parser
|
||||
"""
|
||||
|
@ -18,9 +19,10 @@ import os.path
|
|||
from os import path
|
||||
import shutil
|
||||
import json
|
||||
import math
|
||||
|
||||
from cymem.cymem cimport Pool, Address
|
||||
from murmurhash.mrmr cimport hash64
|
||||
from murmurhash.mrmr cimport real_hash64 as hash64
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
|
||||
|
||||
|
@ -47,8 +49,9 @@ from ._parse_features cimport CONTEXT_SIZE
|
|||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from .parser cimport Parser
|
||||
from .parser cimport ParserPerceptron
|
||||
from .parser cimport ParserNeuralNet
|
||||
from ._neural cimport ParserPerceptron
|
||||
from ._neural cimport ParserNeuralNet
|
||||
|
||||
|
||||
DEBUG = False
|
||||
def set_debug(val):
|
||||
|
@ -68,7 +71,6 @@ def get_templates(name):
|
|||
|
||||
|
||||
cdef int BEAM_WIDTH = 8
|
||||
MAX_VIOLN_UPDATE = False
|
||||
|
||||
cdef class BeamParser(Parser):
|
||||
cdef public int beam_width
|
||||
|
@ -103,67 +105,63 @@ cdef class BeamParser(Parser):
|
|||
gold.check_done(_check_final_state, NULL)
|
||||
violn = MaxViolation()
|
||||
while not pred.is_done and not gold.is_done:
|
||||
# We search separately here, to allow for ambiguity in the gold
|
||||
# parse.
|
||||
# We search separately here, to allow for ambiguity in the gold parse.
|
||||
self._advance_beam(pred, gold_parse, False)
|
||||
self._advance_beam(gold, gold_parse, True)
|
||||
if MAX_VIOLN_UPDATE:
|
||||
violn.check_crf(pred, gold)
|
||||
if violn.delta >= 10000:
|
||||
break
|
||||
elif pred.min_score > gold.score: # Early update
|
||||
violn.check_crf(pred, gold)
|
||||
if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
|
||||
break
|
||||
if MAX_VIOLN_UPDATE:
|
||||
self._max_violation_update(
|
||||
tokens, violn.p_probs, violn.p_hist,
|
||||
violn.g_probs, violn.g_hist)
|
||||
else:
|
||||
self._early_update(tokens, pred, gold)
|
||||
violn.check_crf(pred, gold)
|
||||
if isinstance(self.model, ParserNeuralNet):
|
||||
min_grad = 0.01 ** (itn+1)
|
||||
for grad, hist in zip(violn.p_probs, violn.p_hist):
|
||||
assert not math.isnan(grad)
|
||||
assert not math.isinf(grad)
|
||||
if abs(grad) >= min_grad:
|
||||
self._update_dense(tokens, hist, grad)
|
||||
for grad, hist in zip(violn.g_probs, violn.g_hist):
|
||||
assert not math.isnan(grad)
|
||||
assert not math.isinf(grad)
|
||||
if abs(grad) >= min_grad:
|
||||
self._update_dense(tokens, hist, grad)
|
||||
else:
|
||||
self.model.time += 1
|
||||
#min_grad = 0.01 ** (itn+1)
|
||||
#for grad, hist in zip(violn.p_probs, violn.p_hist):
|
||||
# assert not math.isnan(grad)
|
||||
# assert not math.isinf(grad)
|
||||
# if abs(grad) >= min_grad:
|
||||
# self._update(tokens, hist, -grad)
|
||||
#for grad, hist in zip(violn.g_probs, violn.g_hist):
|
||||
# assert not math.isnan(grad)
|
||||
# assert not math.isinf(grad)
|
||||
# if abs(grad) >= min_grad:
|
||||
# self._update(tokens, hist, -grad)
|
||||
if violn.p_hist:
|
||||
self._update(tokens, violn.p_hist[0], -1.0)
|
||||
if violn.g_hist:
|
||||
self._update(tokens, violn.g_hist[0], 1.0)
|
||||
_cleanup(pred)
|
||||
_cleanup(gold)
|
||||
return pred.loss
|
||||
|
||||
def _max_violation_update(self, Doc doc, p_grads, p_hist, g_grads, g_hist):
|
||||
for grad, hist in zip(p_grads, p_hist):
|
||||
if abs(grad) >= 1e-5:
|
||||
self._update_dense(doc, hist, grad)
|
||||
for grad, hist in zip(g_grads, g_hist):
|
||||
if abs(grad) >= 1e-5:
|
||||
self._update_dense(doc, hist, -grad)
|
||||
|
||||
def _early_update(self, Doc doc, Beam pred, Beam gold):
|
||||
# Gather the partition function --- Z --- by which we can normalize the
|
||||
# scores into a probability distribution. The simple idea here is that
|
||||
# we clip the probability of all parses outside the beam to 0.
|
||||
cdef long double Z = 0.0
|
||||
for i in range(pred.size):
|
||||
# Make sure we've only got negative examples here.
|
||||
# Otherwise, we might double-count the gold.
|
||||
if pred._states[i].loss > 0:
|
||||
Z += exp(pred._states[i].score)
|
||||
if Z > 0: # If no negative examples, don't update.
|
||||
Z += exp(gold.score)
|
||||
for i, hist in enumerate(pred.histories):
|
||||
if pred._states[i].loss > 0:
|
||||
# Update with the negative example.
|
||||
# Gradient of loss is P(parse) - 0
|
||||
self._update_dense(doc, hist, exp(pred._states[i].score) / Z)
|
||||
# Update with the positive example.
|
||||
# Gradient of loss is P(parse) - 1
|
||||
self._update_dense(doc, gold.histories[0], (exp(gold.score) / Z) - 1)
|
||||
|
||||
|
||||
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
|
||||
cdef Example py_eg = Example(nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.model.nr_feat, widths=self.model.widths)
|
||||
cdef ExampleC* eg = py_eg.c
|
||||
|
||||
cdef ParserNeuralNet model = self.model
|
||||
cdef ParserNeuralNet nn_model
|
||||
cdef ParserPerceptron ap_model
|
||||
for i in range(beam.size):
|
||||
py_eg.reset()
|
||||
stcls = <StateClass>beam.at(i)
|
||||
if not stcls.c.is_final():
|
||||
model.set_featuresC(eg, stcls.c)
|
||||
model.set_scoresC(beam.scores[i], eg.features, eg.nr_feat, 1)
|
||||
if isinstance(self.model, ParserNeuralNet):
|
||||
ParserNeuralNet.set_featuresC(self.model, eg, stcls.c)
|
||||
else:
|
||||
ParserPerceptron.set_featuresC(self.model, eg, stcls.c)
|
||||
self.model.set_scoresC(beam.scores[i], eg.features, eg.nr_feat, 1)
|
||||
self.moves.set_valid(beam.is_valid[i], stcls.c)
|
||||
if gold is not None:
|
||||
for i in range(beam.size):
|
||||
|
@ -173,28 +171,45 @@ cdef class BeamParser(Parser):
|
|||
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
|
||||
if follow_gold:
|
||||
for j in range(self.moves.n_moves):
|
||||
beam.is_valid[i][j] *= beam.costs[i][j] == 0
|
||||
beam.is_valid[i][j] *= beam.costs[i][j] < 1
|
||||
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
|
||||
beam.check_done(_check_final_state, NULL)
|
||||
|
||||
def _update_dense(self, Doc doc, history, weight_t loss):
|
||||
cdef Example py_eg = Example(nr_class=self.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.model.nr_feat,
|
||||
widths=self.model.widths)
|
||||
cdef Example py_eg = Example(nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.model.nr_feat, widths=self.model.widths)
|
||||
cdef ExampleC* eg = py_eg.c
|
||||
cdef ParserNeuralNet model = self.model
|
||||
stcls = StateClass.init(doc.c, doc.length)
|
||||
self.moves.initialize_state(stcls.c)
|
||||
cdef uint64_t[2] key
|
||||
key[0] = hash64(doc.c, sizeof(TokenC) * doc.length, 0)
|
||||
key[1] = 0
|
||||
cdef uint64_t clas
|
||||
for clas in history:
|
||||
model.set_featuresC(eg, stcls.c)
|
||||
self.moves.set_valid(eg.is_valid, stcls.c)
|
||||
for i in range(self.moves.n_moves):
|
||||
eg.costs[i] = loss if i == clas else 0
|
||||
# Update with a sparse gradient: everything's 0, except our class.
|
||||
# Remember, this is a component of the global update. It's not our
|
||||
# "job" here to think about the other beam candidates. We just want
|
||||
# to work on this sequence. However, other beam candidates will
|
||||
# have gradients that refer to the same state.
|
||||
# We therefore have a key that indicates the current sequence, so that
|
||||
# the model can merge updates that refer to the same state together,
|
||||
# by summing their gradients.
|
||||
memset(eg.costs, 0, self.moves.n_moves)
|
||||
eg.costs[clas] = loss
|
||||
model.updateC(
|
||||
eg.features, eg.nr_feat, True, eg.costs, eg.is_valid, False)
|
||||
eg.features, eg.nr_feat, True, eg.costs, eg.is_valid, False, key=key[0])
|
||||
self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
|
||||
py_eg.reset()
|
||||
# Build a hash of the state sequence.
|
||||
# Position 0 represents the previous sequence, position 1 the new class.
|
||||
# So we want to do:
|
||||
# key.prev = hash((key.prev, key.new))
|
||||
# key.new = clas
|
||||
key[1] = clas
|
||||
key[0] = hash64(key, sizeof(key), 0)
|
||||
|
||||
def _update(self, Doc tokens, list hist, weight_t inc):
|
||||
cdef Pool mem = Pool()
|
||||
|
@ -248,3 +263,32 @@ def _cleanup(Beam beam):
|
|||
cdef hash_t _hash_state(void* _state, void* _) except 0:
|
||||
state = <StateClass>_state
|
||||
return state.c.hash()
|
||||
|
||||
|
||||
# def _early_update(self, Doc doc, Beam pred, Beam gold):
|
||||
# # Gather the partition function --- Z --- by which we can normalize the
|
||||
# # scores into a probability distribution. The simple idea here is that
|
||||
# # we clip the probability of all parses outside the beam to 0.
|
||||
# cdef long double Z = 0.0
|
||||
# for i in range(pred.size):
|
||||
# # Make sure we've only got negative examples here.
|
||||
# # Otherwise, we might double-count the gold.
|
||||
# if pred._states[i].loss > 0:
|
||||
# Z += exp(pred._states[i].score)
|
||||
# cdef weight_t grad
|
||||
# if Z > 0: # If no negative examples, don't update.
|
||||
# Z += exp(gold.score)
|
||||
# for i, hist in enumerate(pred.histories):
|
||||
# if pred._states[i].loss > 0:
|
||||
# # Update with the negative example.
|
||||
# # Gradient of loss is P(parse) - 0
|
||||
# grad = exp(pred._states[i].score) / Z
|
||||
# if abs(grad) >= 0.01:
|
||||
# self._update_dense(doc, hist, grad)
|
||||
# # Update with the positive example.
|
||||
# # Gradient of loss is P(parse) - 1
|
||||
# grad = (exp(gold.score) / Z) - 1
|
||||
# if abs(grad) >= 0.01:
|
||||
# self._update_dense(doc, gold.histories[0], grad)
|
||||
#
|
||||
#
|
||||
|
|
Loading…
Reference in New Issue
Block a user