mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 09:26:27 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
6a9d14e35a
|
@ -456,10 +456,10 @@ class Errors:
|
|||
"issue tracker: http://github.com/explosion/spaCy/issues")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E092 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
||||
E902 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
||||
"Try checking whitespace and delimiters. See "
|
||||
"https://nightly.spacy.io/api/cli#convert")
|
||||
E093 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
||||
E903 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
||||
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
|
||||
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
|
||||
"dimension refers to the output width, after the linear projection "
|
||||
|
|
|
@ -25,8 +25,14 @@ class Russian(Language):
|
|||
default_config={"model": None, "mode": "pymorphy2"},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(nlp: Language, model: Optional[Model], name: str, mode: str):
|
||||
return RussianLemmatizer(nlp.vocab, model, name, mode=mode)
|
||||
def make_lemmatizer(
|
||||
nlp: Language,
|
||||
model: Optional[Model],
|
||||
name: str,
|
||||
mode: str,
|
||||
overwrite: bool = False,
|
||||
):
|
||||
return RussianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
||||
|
||||
|
||||
__all__ = ["Russian"]
|
||||
|
|
|
@ -2,7 +2,6 @@ from typing import Optional, List, Dict, Tuple
|
|||
|
||||
from thinc.api import Model
|
||||
|
||||
from ...lookups import Lookups
|
||||
from ...pipeline import Lemmatizer
|
||||
from ...symbols import POS
|
||||
from ...tokens import Token
|
||||
|
@ -22,9 +21,9 @@ class RussianLemmatizer(Lemmatizer):
|
|||
name: str = "lemmatizer",
|
||||
*,
|
||||
mode: str = "pymorphy2",
|
||||
lookups: Optional[Lookups] = None,
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
|
||||
super().__init__(vocab, model, name, mode=mode, overwrite=overwrite)
|
||||
|
||||
try:
|
||||
from pymorphy2 import MorphAnalyzer
|
||||
|
|
|
@ -26,8 +26,8 @@ class Ukrainian(Language):
|
|||
default_config={"model": None, "mode": "pymorphy2"},
|
||||
default_score_weights={"lemma_acc": 1.0},
|
||||
)
|
||||
def make_lemmatizer(nlp: Language, model: Optional[Model], name: str, mode: str):
|
||||
return UkrainianLemmatizer(nlp.vocab, model, name, mode=mode)
|
||||
def make_lemmatizer(nlp: Language, model: Optional[Model], name: str, mode: str, overwrite: bool = False,):
|
||||
return UkrainianLemmatizer(nlp.vocab, model, name, mode=mode, overwrite=overwrite)
|
||||
|
||||
|
||||
__all__ = ["Ukrainian"]
|
||||
|
|
|
@ -3,7 +3,6 @@ from typing import Optional
|
|||
from thinc.api import Model
|
||||
|
||||
from ..ru.lemmatizer import RussianLemmatizer
|
||||
from ...lookups import Lookups
|
||||
from ...vocab import Vocab
|
||||
|
||||
|
||||
|
@ -15,9 +14,9 @@ class UkrainianLemmatizer(RussianLemmatizer):
|
|||
name: str = "lemmatizer",
|
||||
*,
|
||||
mode: str = "pymorphy2",
|
||||
lookups: Optional[Lookups] = None,
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
super().__init__(vocab, model, name, mode=mode, lookups=lookups)
|
||||
super().__init__(vocab, model, name, mode=mode, overwrite=overwrite)
|
||||
try:
|
||||
from pymorphy2 import MorphAnalyzer
|
||||
except ImportError:
|
||||
|
|
|
@ -248,7 +248,6 @@ def tt_tokenizer():
|
|||
@pytest.fixture(scope="session")
|
||||
def uk_tokenizer():
|
||||
pytest.importorskip("pymorphy2")
|
||||
pytest.importorskip("pymorphy2.lang")
|
||||
return get_lang_class("uk")().tokenizer
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.pipeline import merge_entities
|
||||
import pytest
|
||||
|
||||
|
||||
def test_issue5918():
|
||||
|
|
|
@ -7,6 +7,15 @@ from spacy import util
|
|||
from spacy import prefer_gpu, require_gpu
|
||||
from spacy.ml._precomputable_affine import PrecomputableAffine
|
||||
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
||||
from spacy.util import dot_to_object, SimpleFrozenList
|
||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||
from spacy.training.batchers import minibatch_by_words
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.nl import Dutch
|
||||
from spacy.language import DEFAULT_CONFIG_PATH
|
||||
from spacy.schemas import ConfigSchemaTraining
|
||||
|
||||
from .util import get_random_doc
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -157,3 +166,128 @@ def test_dot_to_dict(dot_notation, expected):
|
|||
result = util.dot_to_dict(dot_notation)
|
||||
assert result == expected
|
||||
assert util.dict_to_dot(result) == dot_notation
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 400, 199], [3]),
|
||||
([400, 400, 199, 3], [4]),
|
||||
([400, 400, 199, 3, 200], [3, 2]),
|
||||
([400, 400, 199, 3, 1], [5]),
|
||||
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
||||
([400, 400, 199, 3, 1, 200], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
||||
([1, 2, 999], [3]),
|
||||
([1, 2, 999, 1], [4]),
|
||||
([1, 200, 999, 1], [2, 2]),
|
||||
([1, 999, 200, 1], [2, 2]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch(doc_sizes, expected_batches):
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
max_size = batch_size + batch_size * tol
|
||||
for batch in batches:
|
||||
assert sum([len(doc) for doc in batch]) < max_size
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 4000, 199], [1, 2]),
|
||||
([400, 400, 199, 3000, 200], [1, 4]),
|
||||
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
||||
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
||||
([1, 2, 9999], [1, 2]),
|
||||
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
||||
""" Test that oversized documents are returned in their own batch"""
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
|
||||
def test_util_dot_section():
|
||||
cfg_string = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
nlp_config = Config().from_str(cfg_string)
|
||||
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
||||
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
||||
default_config["nlp"]["lang"] = "nl"
|
||||
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
||||
# Test that creation went OK
|
||||
assert isinstance(en_nlp, English)
|
||||
assert isinstance(nl_nlp, Dutch)
|
||||
assert nl_nlp.pipe_names == []
|
||||
assert en_nlp.pipe_names == ["textcat"]
|
||||
# not exclusive_classes
|
||||
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
||||
# Test that default values got overwritten
|
||||
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
||||
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
||||
# Test proper functioning of 'dot_to_object'
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
||||
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
||||
|
||||
|
||||
def test_simple_frozen_list():
|
||||
t = SimpleFrozenList(["foo", "bar"])
|
||||
assert t == ["foo", "bar"]
|
||||
assert t.index("bar") == 1 # okay method
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.sort()
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.extend(["baz"])
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.pop()
|
||||
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
|
||||
|
||||
def test_resolve_dot_names():
|
||||
config = {
|
||||
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
||||
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
||||
}
|
||||
result = util.resolve_dot_names(config, ["training.optimizer"])
|
||||
assert isinstance(result[0], Optimizer)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ["training", "xyz"]
|
||||
|
|
|
@ -1,137 +0,0 @@
|
|||
import pytest
|
||||
|
||||
from spacy import util
|
||||
from spacy.util import dot_to_object, SimpleFrozenList
|
||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||
from spacy.training.batchers import minibatch_by_words
|
||||
from spacy.lang.en import English
|
||||
from spacy.lang.nl import Dutch
|
||||
from spacy.language import DEFAULT_CONFIG_PATH
|
||||
from spacy.schemas import ConfigSchemaTraining
|
||||
|
||||
from .util import get_random_doc
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 400, 199], [3]),
|
||||
([400, 400, 199, 3], [4]),
|
||||
([400, 400, 199, 3, 200], [3, 2]),
|
||||
([400, 400, 199, 3, 1], [5]),
|
||||
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
||||
([400, 400, 199, 3, 1, 200], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999], [3, 3]),
|
||||
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
||||
([1, 2, 999], [3]),
|
||||
([1, 2, 999, 1], [4]),
|
||||
([1, 200, 999, 1], [2, 2]),
|
||||
([1, 999, 200, 1], [2, 2]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch(doc_sizes, expected_batches):
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
max_size = batch_size + batch_size * tol
|
||||
for batch in batches:
|
||||
assert sum([len(doc) for doc in batch]) < max_size
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"doc_sizes, expected_batches",
|
||||
[
|
||||
([400, 4000, 199], [1, 2]),
|
||||
([400, 400, 199, 3000, 200], [1, 4]),
|
||||
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
||||
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
||||
([1, 2, 9999], [1, 2]),
|
||||
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
||||
],
|
||||
)
|
||||
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
||||
""" Test that oversized documents are returned in their own batch"""
|
||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||
tol = 0.2
|
||||
batch_size = 1000
|
||||
batches = list(
|
||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
||||
)
|
||||
assert [len(batch) for batch in batches] == expected_batches
|
||||
|
||||
|
||||
def test_util_dot_section():
|
||||
cfg_string = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
nlp_config = Config().from_str(cfg_string)
|
||||
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
||||
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
||||
default_config["nlp"]["lang"] = "nl"
|
||||
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
||||
# Test that creation went OK
|
||||
assert isinstance(en_nlp, English)
|
||||
assert isinstance(nl_nlp, Dutch)
|
||||
assert nl_nlp.pipe_names == []
|
||||
assert en_nlp.pipe_names == ["textcat"]
|
||||
# not exclusive_classes
|
||||
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
||||
# Test that default values got overwritten
|
||||
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
||||
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
||||
# Test proper functioning of 'dot_to_object'
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
||||
with pytest.raises(KeyError):
|
||||
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
||||
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
||||
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
||||
|
||||
|
||||
def test_simple_frozen_list():
|
||||
t = SimpleFrozenList(["foo", "bar"])
|
||||
assert t == ["foo", "bar"]
|
||||
assert t.index("bar") == 1 # okay method
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.sort()
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.extend(["baz"])
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.pop()
|
||||
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
||||
with pytest.raises(NotImplementedError):
|
||||
t.append("baz")
|
||||
|
||||
|
||||
def test_resolve_dot_names():
|
||||
config = {
|
||||
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
||||
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
||||
}
|
||||
result = util.resolve_dot_names(config, ["training.optimizer"])
|
||||
assert isinstance(result[0], Optimizer)
|
||||
with pytest.raises(ConfigValidationError) as e:
|
||||
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
||||
errors = e.value.errors
|
||||
assert len(errors) == 1
|
||||
assert errors[0]["loc"] == ["training", "xyz"]
|
|
@ -103,7 +103,7 @@ def conll_ner_to_docs(
|
|||
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
|
||||
cols = list(zip(*[line.split() for line in lines]))
|
||||
if len(cols) < 2:
|
||||
raise ValueError(Errors.E093)
|
||||
raise ValueError(Errors.E903)
|
||||
length = len(cols[0])
|
||||
words.extend(cols[0])
|
||||
sent_starts.extend([True] + [False] * (length - 1))
|
||||
|
|
|
@ -46,7 +46,7 @@ def read_iob(raw_sents, vocab, n_sents):
|
|||
sent_words, sent_iob = zip(*sent_tokens)
|
||||
sent_tags = ["-"] * len(sent_words)
|
||||
else:
|
||||
raise ValueError(Errors.E092)
|
||||
raise ValueError(Errors.E902)
|
||||
words.extend(sent_words)
|
||||
tags.extend(sent_tags)
|
||||
iob.extend(sent_iob)
|
||||
|
|
|
@ -226,6 +226,12 @@ the "catastrophic forgetting" problem. This feature is experimental.
|
|||
Find the loss and gradient of loss for the batch of documents and their
|
||||
predicted scores.
|
||||
|
||||
<Infobox variant="danger">
|
||||
|
||||
This method needs to be overwritten with your own custom `get_loss` method.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
|
|
@ -86,7 +86,8 @@ see are:
|
|||
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
|
||||
| ~~Padded~~ | A container to handle variable-length sequence data in a padded contiguous array. |
|
||||
|
||||
The model type signatures help you figure out which model architectures and
|
||||
See the [Thinc type reference](https://thinc.ai/docs/api-types) for details. The
|
||||
model type signatures help you figure out which model architectures and
|
||||
components can **fit together**. For instance, the
|
||||
[`TextCategorizer`](/api/textcategorizer) class expects a model typed
|
||||
~~Model[List[Doc], Floats2d]~~, because the model will predict one row of
|
||||
|
@ -288,7 +289,7 @@ those parts of the network.
|
|||
|
||||
To use our custom model including the PyTorch subnetwork, all we need to do is
|
||||
register the architecture using the
|
||||
[`architectures` registry](/api/top-level#registry). This will assign the
|
||||
[`architectures` registry](/api/top-level#registry). This assigns the
|
||||
architecture a name so spaCy knows how to find it, and allows passing in
|
||||
arguments like hyperparameters via the [config](/usage/training#config). The
|
||||
full example then becomes:
|
||||
|
@ -373,7 +374,7 @@ gpu_allocator = "pytorch"
|
|||
Of course it's also possible to define the `Model` from the previous section
|
||||
entirely in Thinc. The Thinc documentation provides details on the
|
||||
[various layers](https://thinc.ai/docs/api-layers) and helper functions
|
||||
available. Combinators can also be used to
|
||||
available. Combinators can be used to
|
||||
[overload operators](https://thinc.ai/docs/usage-models#operators) and a common
|
||||
usage pattern is to bind `chain` to `>>`. The "native" Thinc version of our
|
||||
simple neural network would then become:
|
||||
|
@ -486,28 +487,376 @@ with Model.define_operators({">>": chain}):
|
|||
|
||||
## Create new trainable components {#components}
|
||||
|
||||
<Infobox title="This section is still under construction" emoji="🚧" variant="warning">
|
||||
In addition to [swapping out](#swap-architectures) default models in built-in
|
||||
components, you can also implement an entirely new,
|
||||
[trainable](/usage/processing-pipelines#trainable-components) pipeline component
|
||||
from scratch. This can be done by creating a new class inheriting from
|
||||
[`Pipe`](/api/pipe), and linking it up to your custom model implementation.
|
||||
|
||||
<Infobox title="Trainable component API" emoji="💡">
|
||||
|
||||
For details on how to implement pipeline components, check out the usage guide
|
||||
on [custom components](/usage/processing-pipelines#custom-component) and the
|
||||
overview of the `Pipe` methods used by
|
||||
[trainable components](/usage/processing-pipelines#trainable-components).
|
||||
|
||||
</Infobox>
|
||||
|
||||
<!-- TODO: write trainable component section
|
||||
- Interaction with `predict`, `get_loss` and `set_annotations`
|
||||
- Initialization life-cycle with `initialize`, correlation with add_label
|
||||
Example: relation extraction component (implemented as project template)
|
||||
Avoid duplication with usage/processing-pipelines#trainable-components ?
|
||||
-->
|
||||
### Example: Entity elation extraction component {#component-rel}
|
||||
|
||||
<!-- ![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
|
||||
This section outlines an example use-case of implementing a **novel relation
|
||||
extraction component** from scratch. We'll implement a binary relation
|
||||
extraction method that determines whether or not **two entities** in a document
|
||||
are related, and if so, what type of relation. We'll allow multiple types of
|
||||
relations between two such entities (multi-label setting). There are two major
|
||||
steps required:
|
||||
|
||||
1. Implement a [machine learning model](#component-rel-model) specific to this
|
||||
task. It will have to extract candidates from a [`Doc`](/api/doc) and predict
|
||||
a relation for the available candidate pairs.
|
||||
2. Implement a custom [pipeline component](#component-rel-pipe) powered by the
|
||||
machine learning model that sets annotations on the [`Doc`](/api/doc) passing
|
||||
through the pipeline.
|
||||
|
||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
||||
|
||||
</Project> -->
|
||||
|
||||
#### Step 1: Implementing the Model {#component-rel-model}
|
||||
|
||||
We need to implement a [`Model`](https://thinc.ai/docs/api-model) that takes a
|
||||
**list of documents** (~~List[Doc]~~) as input, and outputs a **two-dimensional
|
||||
matrix** (~~Floats2d~~) of predictions:
|
||||
|
||||
> #### Model type annotations
|
||||
>
|
||||
> The `Model` class is a generic type that can specify its input and output
|
||||
> types, e.g. ~~Model[List[Doc], Floats2d]~~. Type hints are used for static
|
||||
> type checks and validation. See the section on [type signatures](#type-sigs)
|
||||
> for details.
|
||||
|
||||
```python
|
||||
def update(self, examples):
|
||||
docs = [ex.predicted for ex in examples]
|
||||
refs = [ex.reference for ex in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
gradient = self.get_loss(predictions, refs)
|
||||
backprop(gradient)
|
||||
|
||||
def __call__(self, doc):
|
||||
predictions = self.model([doc])
|
||||
self.set_annotations(predictions)
|
||||
### Register the model architecture
|
||||
@registry.architectures.register("rel_model.v1")
|
||||
def create_relation_model(...) -> Model[List[Doc], Floats2d]:
|
||||
model = ... # 👈 model will go here
|
||||
return model
|
||||
```
|
||||
-->
|
||||
|
||||
The first layer in this model will typically be an
|
||||
[embedding layer](/usage/embeddings-transformers) such as a
|
||||
[`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer). This
|
||||
layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
|
||||
transforms each **document into a list of tokens**, with each token being
|
||||
represented by its embedding in the vector space.
|
||||
|
||||
Next, we need a method that **generates pairs of entities** that we want to
|
||||
classify as being related or not. As these candidate pairs are typically formed
|
||||
within one document, this function takes a [`Doc`](/api/doc) as input and
|
||||
outputs a `List` of `Span` tuples. For instance, a very straightforward
|
||||
implementation would be to just take any two entities from the same document:
|
||||
|
||||
```python
|
||||
### Simple candiate generation
|
||||
def get_candidates(doc: Doc) -> List[Tuple[Span, Span]]:
|
||||
candidates = []
|
||||
for ent1 in doc.ents:
|
||||
for ent2 in doc.ents:
|
||||
candidates.append((ent1, ent2))
|
||||
return candidates
|
||||
```
|
||||
|
||||
But we could also refine this further by **excluding relations** of an entity
|
||||
with itself, and posing a **maximum distance** (in number of tokens) between two
|
||||
entities. We register this function in the
|
||||
[`@misc` registry](/api/top-level#registry) so we can refer to it from the
|
||||
config, and easily swap it out for any other candidate generation function.
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
> ```ini
|
||||
> [model]
|
||||
> @architectures = "rel_model.v1"
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> # ...
|
||||
>
|
||||
> [model.get_candidates]
|
||||
> @misc = "rel_cand_generator.v1"
|
||||
> max_length = 20
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Extended candidate generation {highlight="1,2,7,8"}
|
||||
@registry.misc.register("rel_cand_generator.v1")
|
||||
def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
|
||||
def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]:
|
||||
candidates = []
|
||||
for ent1 in doc.ents:
|
||||
for ent2 in doc.ents:
|
||||
if ent1 != ent2:
|
||||
if max_length and abs(ent2.start - ent1.start) <= max_length:
|
||||
candidates.append((ent1, ent2))
|
||||
return candidates
|
||||
return get_candidates
|
||||
```
|
||||
|
||||
Finally, we require a method that transforms the candidate entity pairs into a
|
||||
2D tensor using the specified [`Tok2Vec`](/api/tok2vec) or
|
||||
[`Transformer`](/api/transformer). The resulting ~~Floats2~~ object will then be
|
||||
processed by a final `output_layer` of the network. Putting all this together,
|
||||
we can define our relation model in a config file as such:
|
||||
|
||||
```ini
|
||||
### config.cfg
|
||||
[model]
|
||||
@architectures = "rel_model.v1"
|
||||
# ...
|
||||
|
||||
[model.tok2vec]
|
||||
# ...
|
||||
|
||||
[model.get_candidates]
|
||||
@misc = "rel_cand_generator.v2"
|
||||
max_length = 20
|
||||
|
||||
[model.create_candidate_tensor]
|
||||
@misc = "rel_cand_tensor.v1"
|
||||
|
||||
[model.output_layer]
|
||||
@architectures = "rel_output_layer.v1"
|
||||
# ...
|
||||
```
|
||||
|
||||
<!-- TODO: link to project for implementation details -->
|
||||
<!-- TODO: maybe embed files from project that show the architectures? -->
|
||||
|
||||
When creating this model, we store the custom functions as
|
||||
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
|
||||
references, so we can access them easily:
|
||||
|
||||
```python
|
||||
tok2vec_layer = model.get_ref("tok2vec")
|
||||
output_layer = model.get_ref("output_layer")
|
||||
create_candidate_tensor = model.attrs["create_candidate_tensor"]
|
||||
get_candidates = model.attrs["get_candidates"]
|
||||
```
|
||||
|
||||
#### Step 2: Implementing the pipeline component {#component-rel-pipe}
|
||||
|
||||
To use our new relation extraction model as part of a custom
|
||||
[trainable component](/usage/processing-pipelines#trainable-components), we
|
||||
create a subclass of [`Pipe`](/api/pipe) that holds the model:
|
||||
|
||||
```python
|
||||
### Pipeline component skeleton
|
||||
from spacy.pipeline import Pipe
|
||||
|
||||
class RelationExtractor(Pipe):
|
||||
def __init__(self, vocab, model, name="rel"):
|
||||
"""Create a component instance."""
|
||||
self.model = model
|
||||
self.vocab = vocab
|
||||
self.name = name
|
||||
|
||||
def update(self, examples, drop=0.0, set_annotations=False, sgd=None, losses=None):
|
||||
"""Learn from a batch of Example objects."""
|
||||
...
|
||||
|
||||
def predict(self, docs):
|
||||
"""Apply the model to a batch of Doc objects."""
|
||||
...
|
||||
|
||||
def set_annotations(self, docs, predictions):
|
||||
"""Modify a batch of Doc objects using the predictions."""
|
||||
...
|
||||
|
||||
def initialize(self, get_examples, nlp=None, labels=None):
|
||||
"""Initialize the model before training."""
|
||||
...
|
||||
|
||||
def add_label(self, label):
|
||||
"""Add a label to the component."""
|
||||
...
|
||||
```
|
||||
|
||||
Before the model can be used, it needs to be
|
||||
[initialized](/usage/training#initialization). This function receives a callback
|
||||
to access the full **training data set**, or a representative sample. This data
|
||||
set can be used to deduce all **relevant labels**. Alternatively, a list of
|
||||
labels can be provided to `initialize`, or you can call the
|
||||
`RelationExtractoradd_label` directly. The number of labels defines the output
|
||||
dimensionality of the network, and will be used to do
|
||||
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
|
||||
layers of the neural network. This is triggered by calling
|
||||
[`Model.initialize`](https://thinc.ai/api/model#initialize).
|
||||
|
||||
```python
|
||||
### The initialize method {highlight="12,18,22"}
|
||||
from itertools import islice
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
nlp: Language = None,
|
||||
labels: Optional[List[str]] = None,
|
||||
):
|
||||
if labels is not None:
|
||||
for label in labels:
|
||||
self.add_label(label)
|
||||
else:
|
||||
for example in get_examples():
|
||||
relations = example.reference._.rel
|
||||
for indices, label_dict in relations.items():
|
||||
for label in label_dict.keys():
|
||||
self.add_label(label)
|
||||
subbatch = list(islice(get_examples(), 10))
|
||||
doc_sample = [eg.reference for eg in subbatch]
|
||||
label_sample = self._examples_to_truth(subbatch)
|
||||
self.model.initialize(X=doc_sample, Y=label_sample)
|
||||
```
|
||||
|
||||
The `initialize` method is triggered whenever this component is part of an `nlp`
|
||||
pipeline, and [`nlp.initialize`](/api/language#initialize) is invoked.
|
||||
Typically, this happens when the pipeline is set up before training in
|
||||
[`spacy train`](/api/cli#training). After initialization, the pipeline component
|
||||
and its internal model can be trained and used to make predictions.
|
||||
|
||||
During training, the function [`update`](/api/pipe#update) is invoked which
|
||||
delegates to
|
||||
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
|
||||
[`get_loss`](/api/pipe#get_loss) function that **calculate the loss** for a
|
||||
batch of examples, as well as the **gradient** of loss that will be used to
|
||||
update the weights of the model layers. Thinc provides several
|
||||
[loss functions](https://thinc.ai/docs/api-loss) that can be used for the
|
||||
implementation of the `get_loss` function.
|
||||
|
||||
```python
|
||||
### The update method {highlight="12-14"}
|
||||
def update(
|
||||
self,
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
set_annotations: bool = False,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
docs = [ex.predicted for ex in examples]
|
||||
predictions, backprop = self.model.begin_update(docs)
|
||||
loss, gradient = self.get_loss(examples, predictions)
|
||||
backprop(gradient)
|
||||
losses[self.name] += loss
|
||||
...
|
||||
return losses
|
||||
```
|
||||
|
||||
When the internal model is trained, the component can be used to make novel
|
||||
**predictions**. The [`predict`](/api/pipe#predict) function needs to be
|
||||
implemented for each subclass of `Pipe`. In our case, we can simply delegate to
|
||||
the internal model's [predict](https://thinc.ai/docs/api-model#predict) function
|
||||
that takes a batch of `Doc` objects and returns a ~~Floats2d~~ array:
|
||||
|
||||
```python
|
||||
### The predict method
|
||||
def predict(self, docs: Iterable[Doc]) -> Floats2d:
|
||||
predictions = self.model.predict(docs)
|
||||
return self.model.ops.asarray(predictions)
|
||||
```
|
||||
|
||||
The final method that needs to be implemented, is
|
||||
[`set_annotations`](/api/pipe#set_annotations). This function takes the
|
||||
predictions, and modifies the given `Doc` object in place to store them. For our
|
||||
relation extraction component, we store the data as a dictionary in a custom
|
||||
[extension attribute](/usage/processing-pipelines#custom-components-attributes)
|
||||
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
|
||||
each entity**, as this defines an entity pair uniquely within one document.
|
||||
|
||||
To interpret the scores predicted by the relation extraction model correctly, we
|
||||
need to refer to the model's `get_candidates` function that defined which pairs
|
||||
of entities were relevant candidates, so that the predictions can be linked to
|
||||
those exact entities:
|
||||
|
||||
> #### Example output
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("Amsterdam is the capital of the Netherlands.")
|
||||
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
|
||||
> for value, rel_dict in doc._.rel.items():
|
||||
> print(f"{value}: {rel_dict}")
|
||||
>
|
||||
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
|
||||
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
|
||||
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Registering the extension attribute
|
||||
from spacy.tokens import Doc
|
||||
Doc.set_extension("rel", default={})
|
||||
```
|
||||
|
||||
```python
|
||||
### The set_annotations method {highlight="5-6,10"}
|
||||
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
|
||||
c = 0
|
||||
get_candidates = self.model.attrs["get_candidates"]
|
||||
for doc in docs:
|
||||
for (e1, e2) in get_candidates(doc):
|
||||
offset = (e1.start, e2.start)
|
||||
if offset not in doc._.rel:
|
||||
doc._.rel[offset] = {}
|
||||
for j, label in enumerate(self.labels):
|
||||
doc._.rel[offset][label] = predictions[c, j]
|
||||
c += 1
|
||||
```
|
||||
|
||||
Under the hood, when the pipe is applied to a document, it delegates to the
|
||||
`predict` and `set_annotations` methods:
|
||||
|
||||
```python
|
||||
### The __call__ method
|
||||
def __call__(self, Doc doc):
|
||||
predictions = self.predict([doc])
|
||||
self.set_annotations([doc], predictions)
|
||||
return doc
|
||||
```
|
||||
|
||||
Once our `Pipe` subclass is fully implemented, we can
|
||||
[register](/usage/processing-pipelines#custom-components-factories) the
|
||||
component with the [`@Language.factory`](/api/lnguage#factory) decorator. This
|
||||
assigns it a name and lets you create the component with
|
||||
[`nlp.add_pipe`](/api/language#add_pipe) and via the
|
||||
[config](/usage/training#config).
|
||||
|
||||
> #### config.cfg (excerpt)
|
||||
>
|
||||
> ```ini
|
||||
> [components.relation_extractor]
|
||||
> factory = "relation_extractor"
|
||||
>
|
||||
> [components.relation_extractor.model]
|
||||
> @architectures = "rel_model.v1"
|
||||
>
|
||||
> [components.relation_extractor.model.tok2vec]
|
||||
> # ...
|
||||
>
|
||||
> [components.relation_extractor.model.get_candidates]
|
||||
> @misc = "rel_cand_generator.v1"
|
||||
> max_length = 20
|
||||
> ```
|
||||
|
||||
```python
|
||||
### Registering the pipeline component
|
||||
from spacy.language import Language
|
||||
|
||||
@Language.factory("relation_extractor")
|
||||
def make_relation_extractor(nlp, name, model):
|
||||
return RelationExtractor(nlp.vocab, model, name)
|
||||
```
|
||||
|
||||
<!-- TODO: <Project id="tutorials/ner-relations">
|
||||
|
||||
</Project> -->
|
||||
|
|
|
@ -1176,7 +1176,7 @@ plug fully custom machine learning components into your pipeline. You'll need
|
|||
the following:
|
||||
|
||||
1. **Model:** A Thinc [`Model`](https://thinc.ai/docs/api-model) instance. This
|
||||
can be a model using implemented in
|
||||
can be a model implemented in
|
||||
[Thinc](/usage/layers-architectures#thinc), or a
|
||||
[wrapped model](/usage/layers-architectures#frameworks) implemented in
|
||||
PyTorch, TensorFlow, MXNet or a fully custom solution. The model must take a
|
||||
|
|
Loading…
Reference in New Issue
Block a user