mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 04:32:32 +03:00
fixing scorer
This commit is contained in:
parent
7a239f2ec7
commit
6aedd98d02
|
@ -511,10 +511,13 @@ class SpanPredictor(TrainablePipe):
|
|||
total_loss = 0
|
||||
for eg in examples:
|
||||
span_scores, backprop = self.model.begin_update([eg.predicted])
|
||||
loss, d_scores = self.get_loss([eg], span_scores)
|
||||
total_loss += loss
|
||||
# TODO check shape here
|
||||
backprop((d_scores))
|
||||
# FIXME, this only happens once in the first 1000 docs of OntoNotes
|
||||
# and I'm not sure yet why.
|
||||
if span_scores.size:
|
||||
loss, d_scores = self.get_loss([eg], span_scores)
|
||||
total_loss += loss
|
||||
# TODO check shape here
|
||||
backprop((d_scores))
|
||||
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
|
@ -557,7 +560,6 @@ class SpanPredictor(TrainablePipe):
|
|||
assert len(examples) == 1, "Only fake batching is supported."
|
||||
# starts and ends are gold starts and ends (Ints1d)
|
||||
# span_scores is a Floats3d. What are the axes? mention x token x start/end
|
||||
|
||||
for eg in examples:
|
||||
starts = []
|
||||
ends = []
|
||||
|
@ -610,8 +612,8 @@ class SpanPredictor(TrainablePipe):
|
|||
Evaluate on reconstructing the correct spans around
|
||||
gold heads.
|
||||
"""
|
||||
start_scores = []
|
||||
end_scores = []
|
||||
scores = []
|
||||
xp = self.model.ops.xp
|
||||
for eg in examples:
|
||||
starts = []
|
||||
ends = []
|
||||
|
@ -628,16 +630,11 @@ class SpanPredictor(TrainablePipe):
|
|||
pred_starts.append(pred_mention.start)
|
||||
pred_ends.append(pred_mention.end)
|
||||
|
||||
starts = self.model.ops.xp.asarray(starts)
|
||||
ends = self.model.ops.xp.asarray(ends)
|
||||
pred_starts = self.model.ops.xp.asarray(pred_starts)
|
||||
pred_ends = self.model.ops.xp.asarray(pred_ends)
|
||||
start_accuracy = (starts == pred_starts).mean()
|
||||
end_accuracy = (ends == pred_ends).mean()
|
||||
start_scores.append(float(start_accuracy))
|
||||
end_scores.append(float(end_accuracy))
|
||||
out = {
|
||||
"span_start_accuracy": mean(start_scores),
|
||||
"span_end_accuracy": mean(end_scores)
|
||||
}
|
||||
return out
|
||||
starts = xp.asarray(starts)
|
||||
ends = xp.asarray(ends)
|
||||
pred_starts = xp.asarray(pred_starts)
|
||||
pred_ends = xp.asarray(pred_ends)
|
||||
correct = (starts == pred_starts) * (ends == pred_ends)
|
||||
accuracy = correct.mean()
|
||||
scores.append(float(accuracy))
|
||||
return {"span_accuracy": mean(scores)}
|
||||
|
|
Loading…
Reference in New Issue
Block a user