mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
Add Language.distill
(#12116)
* Add `Language.distill` This method is the distillation counterpart of `Language.update`. It takes a teacher `Language` instance and distills the student pipes on the teacher pipes. * Apply suggestions from code review Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com> * Clarify that how Example is used in distillation * Update transition parser distill docstring for examples argument * Pass optimizer to `TrainablePipe.distill` * Annotate pipe before update As discussed internally, we want to let a pipe annotate before doing an update with gold/silver data. Otherwise, the output may be (too) informed by the gold/silver data. * Rename `component_map` to `student_to_teacher` * Better synopsis in `Language.distill` docstring * `name` -> `student_name` * Fix labels type in docstring * Mark distill test as slow * Fix `student_to_teacher` type in docs --------- Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
This commit is contained in:
parent
ec45f704b1
commit
6b07be2110
|
@ -22,7 +22,7 @@ from . import ty
|
|||
from .tokens.underscore import Underscore
|
||||
from .vocab import Vocab, create_vocab
|
||||
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||
from .training import Example, validate_examples
|
||||
from .training import Example, validate_examples, validate_distillation_examples
|
||||
from .training.initialize import init_vocab, init_tok2vec
|
||||
from .scorer import Scorer
|
||||
from .util import registry, SimpleFrozenList, _pipe, raise_error, _DEFAULT_EMPTY_PIPES
|
||||
|
@ -1017,6 +1017,102 @@ class Language:
|
|||
raise ValueError(Errors.E005.format(name=name, returned_type=type(doc)))
|
||||
return doc
|
||||
|
||||
def distill(
|
||||
self,
|
||||
teacher: "Language",
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
exclude: Iterable[str] = SimpleFrozenList(),
|
||||
annotates: Iterable[str] = SimpleFrozenList(),
|
||||
student_to_teacher: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
"""Distill the models in a student pipeline from a teacher pipeline.
|
||||
teacher (Language): Teacher to distill from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): The dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer.
|
||||
losses (Optional(Dict[str, float])): Dictionary to update with the loss,
|
||||
keyed by component.
|
||||
component_cfg (Optional[Dict[str, Dict[str, Any]]]): Config parameters
|
||||
for specific pipeline components, keyed by component name.
|
||||
exclude (Iterable[str]): Names of components that shouldn't be updated.
|
||||
annotates (Iterable[str]): Names of components that should set
|
||||
annotations on the predicted examples after updating.
|
||||
student_to_teacher (Optional[Dict[str, str]]): Map student pipe name to
|
||||
teacher pipe name, only needed for pipes where the student pipe
|
||||
name does not match the teacher pipe name.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary
|
||||
|
||||
DOCS: https://spacy.io/api/language#distill
|
||||
"""
|
||||
if student_to_teacher is None:
|
||||
student_to_teacher = {}
|
||||
if losses is None:
|
||||
losses = {}
|
||||
if isinstance(examples, list) and len(examples) == 0:
|
||||
return losses
|
||||
|
||||
validate_distillation_examples(examples, "Language.distill")
|
||||
examples = _copy_examples(examples)
|
||||
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = self.create_optimizer()
|
||||
sgd = self._optimizer
|
||||
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
pipe_kwargs = {}
|
||||
for student_name, student_proc in self.pipeline:
|
||||
component_cfg.setdefault(student_name, {})
|
||||
pipe_kwargs[student_name] = deepcopy(component_cfg[student_name])
|
||||
component_cfg[student_name].setdefault("drop", drop)
|
||||
pipe_kwargs[student_name].setdefault("batch_size", self.batch_size)
|
||||
|
||||
teacher_pipes = dict(teacher.pipeline)
|
||||
for student_name, student_proc in self.pipeline:
|
||||
if student_name in annotates:
|
||||
for doc, eg in zip(
|
||||
_pipe(
|
||||
(eg.predicted for eg in examples),
|
||||
proc=student_proc,
|
||||
name=student_name,
|
||||
default_error_handler=self.default_error_handler,
|
||||
kwargs=pipe_kwargs[student_name],
|
||||
),
|
||||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
|
||||
if (
|
||||
student_name not in exclude
|
||||
and isinstance(student_proc, ty.DistillableComponent)
|
||||
and student_proc.is_distillable
|
||||
):
|
||||
# A missing teacher pipe is not an error, some student pipes
|
||||
# do not need a teacher, such as tok2vec layer losses.
|
||||
teacher_name = (
|
||||
student_to_teacher[student_name]
|
||||
if student_name in student_to_teacher
|
||||
else student_name
|
||||
)
|
||||
teacher_pipe = teacher_pipes.get(teacher_name, None)
|
||||
student_proc.distill(
|
||||
teacher_pipe,
|
||||
examples,
|
||||
sgd=sgd,
|
||||
losses=losses,
|
||||
**component_cfg[student_name],
|
||||
)
|
||||
|
||||
return losses
|
||||
|
||||
def disable_pipes(self, *names) -> "DisabledPipes":
|
||||
"""Disable one or more pipeline components. If used as a context
|
||||
manager, the pipeline will be restored to the initial state at the end
|
||||
|
@ -1242,12 +1338,16 @@ class Language:
|
|||
self,
|
||||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||
*,
|
||||
labels: Optional[Dict[str, Any]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
) -> Optimizer:
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
returns gold-standard Example objects.
|
||||
labels (Optional[Dict[str, Any]]): Labels to pass to pipe initialization,
|
||||
using the names of the pipes as keys. Overrides labels that are in
|
||||
the model configuration.
|
||||
sgd (Optional[Optimizer]): An optimizer to use for updates. If not
|
||||
provided, will be created using the .create_optimizer() method.
|
||||
RETURNS (thinc.api.Optimizer): The optimizer.
|
||||
|
@ -1292,6 +1392,8 @@ class Language:
|
|||
for name, proc in self.pipeline:
|
||||
if isinstance(proc, ty.InitializableComponent):
|
||||
p_settings = I["components"].get(name, {})
|
||||
if labels is not None and name in labels:
|
||||
p_settings["labels"] = labels[name]
|
||||
p_settings = validate_init_settings(
|
||||
proc.initialize, p_settings, section="components", name=name
|
||||
)
|
||||
|
@ -1725,6 +1827,7 @@ class Language:
|
|||
# using the nlp.config with all defaults.
|
||||
config = util.copy_config(config)
|
||||
orig_pipeline = config.pop("components", {})
|
||||
orig_distill = config.pop("distill", None)
|
||||
orig_pretraining = config.pop("pretraining", None)
|
||||
config["components"] = {}
|
||||
if auto_fill:
|
||||
|
@ -1733,6 +1836,9 @@ class Language:
|
|||
filled = config
|
||||
filled["components"] = orig_pipeline
|
||||
config["components"] = orig_pipeline
|
||||
if orig_distill is not None:
|
||||
filled["distill"] = orig_distill
|
||||
config["distill"] = orig_distill
|
||||
if orig_pretraining is not None:
|
||||
filled["pretraining"] = orig_pretraining
|
||||
config["pretraining"] = orig_pretraining
|
||||
|
|
|
@ -71,8 +71,8 @@ cdef class TrainablePipe(Pipe):
|
|||
teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn
|
||||
from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
and predicted docs must have the same number of tokens and the
|
||||
same orthography.
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer. Will be created via
|
||||
create_optimizer if not set.
|
||||
|
|
|
@ -224,8 +224,8 @@ class Parser(TrainablePipe):
|
|||
teacher_pipe (Optional[TrainablePipe]): The teacher pipe to learn
|
||||
from.
|
||||
examples (Iterable[Example]): Distillation examples. The reference
|
||||
and predicted docs must have the same number of tokens and the
|
||||
same orthography.
|
||||
(teacher) and predicted (student) docs must have the same number of
|
||||
tokens and the same orthography.
|
||||
drop (float): dropout rate.
|
||||
sgd (Optional[Optimizer]): An optimizer. Will be created via
|
||||
create_optimizer if not set.
|
||||
|
|
|
@ -26,6 +26,12 @@ except ImportError:
|
|||
pass
|
||||
|
||||
|
||||
TAGGER_TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def evil_component(doc):
|
||||
if "2" in doc.text:
|
||||
raise ValueError("no dice")
|
||||
|
@ -799,3 +805,66 @@ def test_component_return():
|
|||
nlp.add_pipe("test_component_bad_pipe")
|
||||
with pytest.raises(ValueError, match="instead of a Doc"):
|
||||
nlp("text")
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("teacher_tagger_name", ["tagger", "teacher_tagger"])
|
||||
def test_distill(teacher_tagger_name):
|
||||
teacher = English()
|
||||
teacher_tagger = teacher.add_pipe("tagger", name=teacher_tagger_name)
|
||||
train_examples = []
|
||||
for t in TAGGER_TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(teacher.make_doc(t[0]), t[1]))
|
||||
|
||||
optimizer = teacher.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
teacher.update(train_examples, sgd=optimizer, losses=losses)
|
||||
assert losses[teacher_tagger_name] < 0.00001
|
||||
|
||||
student = English()
|
||||
student_tagger = student.add_pipe("tagger")
|
||||
student_tagger.min_tree_freq = 1
|
||||
student_tagger.initialize(
|
||||
get_examples=lambda: train_examples, labels=teacher_tagger.label_data
|
||||
)
|
||||
|
||||
distill_examples = [
|
||||
Example.from_dict(teacher.make_doc(t[0]), {}) for t in TAGGER_TRAIN_DATA
|
||||
]
|
||||
|
||||
student_to_teacher = (
|
||||
None
|
||||
if teacher_tagger.name == student_tagger.name
|
||||
else {student_tagger.name: teacher_tagger.name}
|
||||
)
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
student.distill(
|
||||
teacher,
|
||||
distill_examples,
|
||||
sgd=optimizer,
|
||||
losses=losses,
|
||||
student_to_teacher=student_to_teacher,
|
||||
)
|
||||
assert losses["tagger"] < 0.00001
|
||||
|
||||
test_text = "I like blue eggs"
|
||||
doc = student(test_text)
|
||||
assert doc[0].tag_ == "N"
|
||||
assert doc[1].tag_ == "V"
|
||||
assert doc[2].tag_ == "J"
|
||||
assert doc[3].tag_ == "N"
|
||||
|
||||
# Do an extra update to check if annotates works, though we can't really
|
||||
# validate the resuls, since the annotations are ephemeral.
|
||||
student.distill(
|
||||
teacher,
|
||||
distill_examples,
|
||||
sgd=optimizer,
|
||||
losses=losses,
|
||||
student_to_teacher=student_to_teacher,
|
||||
annotates=["tagger"],
|
||||
)
|
||||
|
|
19
spacy/ty.py
19
spacy/ty.py
|
@ -26,6 +26,25 @@ class TrainableComponent(Protocol):
|
|||
...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class DistillableComponent(Protocol):
|
||||
is_distillable: bool
|
||||
|
||||
def distill(
|
||||
self,
|
||||
teacher_pipe: Optional[TrainableComponent],
|
||||
examples: Iterable["Example"],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
|
||||
def finish_update(self, sgd: Optimizer) -> None:
|
||||
...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class InitializableComponent(Protocol):
|
||||
def initialize(
|
||||
|
|
|
@ -155,9 +155,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -139,9 +139,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -151,9 +151,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -333,6 +333,34 @@ and custom registered functions if needed. See the
|
|||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Language.distill {id="distill",tag="method,experimental",version="4"}
|
||||
|
||||
Distill the models in a student pipeline from a teacher pipeline.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
>
|
||||
> teacher = spacy.load("en_core_web_lg")
|
||||
> student = English()
|
||||
> student.add_pipe("tagger")
|
||||
> student.distill(teacher, examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher` | The teacher pipeline to distill from. ~~Language~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Dictionary to update with the loss, keyed by pipeline component. ~~Optional[Dict[str, float]]~~ |
|
||||
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
|
||||
| `exclude` | Names of components that shouldn't be updated. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `annotates` | Names of components that should set annotations on the prediced examples after updating. Defaults to `[]`. ~~Iterable[str]~~ |
|
||||
| `student_to_teacher` | Map student component names to teacher component names, only necessary when the names differ. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Language.rehearse {id="rehearse",tag="method,experimental",version="3"}
|
||||
|
||||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||||
|
|
|
@ -145,9 +145,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -258,9 +258,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -130,9 +130,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
|
@ -129,9 +129,9 @@ This feature is experimental.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `teacher_pipe` | The teacher pipe to learn from. ~~Optional[TrainablePipe]~~ |
|
||||
| `examples` | Distillation examples. The reference and predicted docs must have the same number of tokens and the same orthography. ~~Iterable[Example]~~ |
|
||||
| `examples` | A batch of [`Example`](/api/example) distillation examples. The reference (teacher) and predicted (student) docs must have the same number of tokens and orthography. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | Dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user