Refactor pipe(as_tuples) into a separate method

This commit is contained in:
Adriane Boyd 2022-08-17 09:26:16 +02:00
parent 551e73ccfc
commit 6b36d85920
5 changed files with 90 additions and 70 deletions

View File

@ -539,6 +539,10 @@ class Errors(metaclass=ErrorsWithCodes):
"issue tracker: http://github.com/explosion/spaCy/issues")
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v4.x
E300 = ("nlp.pipe(text_tuples, as_tuples=True) has been replaced with:\n"
"nlp.pipe_as_tuples(text_tuples)")
# New errors added in v3.x
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
"permit overlapping spans.")

View File

@ -1470,51 +1470,20 @@ class Language:
except StopIteration:
pass
@overload
def pipe(
self,
texts: Iterable[Union[str, Doc]],
*,
as_tuples: Literal[False] = ...,
batch_size: Optional[int] = ...,
disable: Iterable[str] = ...,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = ...,
n_process: int = ...,
) -> Iterator[Doc]:
...
@overload
def pipe( # noqa: F811
self,
texts: Iterable[Tuple[Union[str, Doc], _AnyContext]],
*,
as_tuples: Literal[True] = ...,
batch_size: Optional[int] = ...,
disable: Iterable[str] = ...,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = ...,
n_process: int = ...,
) -> Iterator[Tuple[Doc, _AnyContext]]:
...
def pipe( # noqa: F811
self,
texts: Union[
Iterable[Union[str, Doc]], Iterable[Tuple[Union[str, Doc], _AnyContext]]
],
*,
as_tuples: bool = False,
batch_size: Optional[int] = None,
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
n_process: int = 1,
) -> Union[Iterator[Doc], Iterator[Tuple[Doc, _AnyContext]]]:
as_tuples: Optional[bool] = None, # deprecated
) -> Iterator[Doc]:
"""Process texts as a stream, and yield `Doc` objects in order.
texts (Iterable[Union[str, Doc]]): A sequence of texts or docs to
process.
as_tuples (bool): If set to True, inputs should be a sequence of
(text, context) tuples. Output will then be a sequence of
(doc, context) tuples. Defaults to False.
batch_size (Optional[int]): The number of texts to buffer.
disable (List[str]): Names of the pipeline components to disable.
component_cfg (Dict[str, Dict]): An optional dictionary with extra keyword
@ -1524,25 +1493,8 @@ class Language:
DOCS: https://spacy.io/api/language#pipe
"""
if as_tuples:
texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts)
docs_with_contexts = (
self._ensure_doc_with_context(text, context) for text, context in texts
)
docs = self.pipe(
docs_with_contexts,
batch_size=batch_size,
disable=disable,
n_process=n_process,
component_cfg=component_cfg,
)
for doc in docs:
context = doc._context
doc._context = None
yield (doc, context)
return
texts = cast(Iterable[Union[str, Doc]], texts)
if as_tuples is not None:
raise ValueError(Errors.E300)
# Set argument defaults
if n_process == -1:
@ -1583,6 +1535,31 @@ class Language:
for doc in docs:
yield doc
def pipe_as_tuples(
self,
texts: Iterable[Tuple[Union[str, Doc], _AnyContext]],
*,
batch_size: Optional[int] = None,
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
n_process: int = 1,
) -> Iterator[Tuple[Doc, _AnyContext]]:
docs_with_contexts = (
self._ensure_doc_with_context(text, context) for text, context in texts
)
docs = self.pipe(
docs_with_contexts,
batch_size=batch_size,
disable=disable,
n_process=n_process,
component_cfg=component_cfg,
)
for doc in docs:
context = doc._context
doc._context = None
yield (doc, context)
return
def _has_gpu_model(self, disable: Iterable[str]):
for name, proc in self.pipeline:
is_trainable = hasattr(proc, "is_trainable") and proc.is_trainable # type: ignore

View File

@ -271,11 +271,11 @@ def test_language_pipe_error_handler_input_as_tuples(en_vocab, n_process):
("TEXT 666", 666),
]
with pytest.raises(ValueError):
list(nlp.pipe(texts, as_tuples=True))
list(nlp.pipe_as_tuples(texts))
nlp.set_error_handler(warn_error)
logger = logging.getLogger("spacy")
with mock.patch.object(logger, "warning") as mock_warning:
tuples = list(nlp.pipe(texts, as_tuples=True, n_process=n_process))
tuples = list(nlp.pipe_as_tuples(texts, n_process=n_process))
# HACK/TODO? the warnings in child processes don't seem to be
# detected by the mock logger
if n_process == 1:
@ -287,6 +287,18 @@ def test_language_pipe_error_handler_input_as_tuples(en_vocab, n_process):
assert (tuples[2][0].text, tuples[2][1]) == ("TEXT 666", 666)
def test_language_previous_pipe_as_tuples_error(nlp):
texts = [
("TEXT 111", 111),
("TEXT 222", 222),
("TEXT 333", 333),
("TEXT 342", 342),
("TEXT 666", 666),
]
with pytest.raises(ValueError, match="nlp.pipe_as_tuples"):
list(nlp.pipe(texts, as_tuples=True))
@pytest.mark.parametrize("n_process", [1, 2])
def test_language_pipe_error_handler_pipe(en_vocab, n_process):
"""Test the error handling of a component's pipe method"""

View File

@ -191,16 +191,42 @@ more efficient than processing texts one-by-one.
> assert doc.has_annotation("DEP")
> ```
| Name | Description |
| ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings. ~~Iterable[str]~~ |
| _keyword-only_ | |
| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
| Name | Description |
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings. ~~Iterable[str]~~ |
| _keyword-only_ | |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
## Language.pipe_as_tuples {#pipe_as_tuples tag="method"}
Process `(text, context)` tuples as a stream, and yield `(Doc, context)` tuples
in order. This is usually more efficient than processing texts one-by-one.
> #### Example
>
> ```python
> texts = [
> ("One document.", {"id": 1}),
> "...",
> ("Lots of documents", {"id": 1000}),
> ]
> for doc, context in nlp.pipe_as_tuples(texts, batch_size=50):
> assert doc.has_annotation("DEP")
> ```
| Name | Description |
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings. ~~Iterable[Tuple(str, Any)]~~ |
| _keyword-only_ | |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` <Tag variant="new">2.2.2</Tag> | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Tuple(Doc, Any)~~ |
## Language.set_error_handler {#set_error_handler tag="method" new="3"}

View File

@ -91,11 +91,12 @@ have to call `list()` on it first:
</Infobox>
You can use the `as_tuples` option to pass additional context along with each
doc when using [`nlp.pipe`](/api/language#pipe). If `as_tuples` is `True`, then
the input should be a sequence of `(text, context)` tuples and the output will
be a sequence of `(doc, context)` tuples. For example, you can pass metadata in
the context and save it in a [custom attribute](#custom-components-attributes):
You can use the [`nlp.pipe_as_tuples`](/api/language#pipe_as_tuples) method to
pass additional context along with each doc when using the functionality of
[`nlp.pipe`](/api/language#pipe). The input should be a sequence of
`(text, context)` tuples and the output will be a sequence of `(doc, context)`
tuples. For example, you can pass metadata in the context and save it in a
[custom attribute](#custom-components-attributes):
```python
### {executable="true"}
@ -111,7 +112,7 @@ text_tuples = [
]
nlp = spacy.load("en_core_web_sm")
doc_tuples = nlp.pipe(text_tuples, as_tuples=True)
doc_tuples = nlp.pipe_as_tuples(text_tuples)
docs = []
for doc, context in doc_tuples: