* Refactor transition system to use classes with staticmethods.

This commit is contained in:
Matthew Honnibal 2015-06-05 02:27:17 +02:00
parent 36a34d544b
commit 6bf35cecc3
5 changed files with 521 additions and 462 deletions

View File

@ -46,6 +46,306 @@ MOVE_NAMES[CONSTITUENT] = 'C'
MOVE_NAMES[ADJUST] = 'A'
cdef class Shift:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return not at_eol(s)
@staticmethod
cdef int transition(State* state, int label) except -1:
# Set the dep label, in case we need it after we reduce
if NON_MONOTONIC:
state.sent[state.i].dep = label
push_stack(state)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not Shift.is_valid(s, label):
return 9000
cost = 0
cost += head_in_stack(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
# If we can break, and there's no cost to doing so, we should
if Break.is_valid(s, label) and Break.cost(s, gold, -1) == 0:
cost += 1
return cost
cdef class Reduce:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
if NON_MONOTONIC:
return s.stack_len >= 2 #and not missing_brackets(s)
else:
return s.stack_len >= 2 and has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
if NON_MONOTONIC and not has_head(get_s0(state)):
add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not Reduce.is_valid(s, label):
return 9000
cdef int cost = 0
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[0], gold.heads)
return cost
cdef class LeftArc:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
if NON_MONOTONIC:
return s.stack_len >= 1 #and not missing_brackets(s)
else:
return s.stack_len >= 1 and not has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
# Interpret left-arcs from EOL as attachment to root
if at_eol(state):
add_dep(state, state.stack[0], state.stack[0], label)
else:
add_dep(state, state.i, state.stack[0], label)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not LeftArc.is_valid(s, label):
return 9000
cdef int cost = 0
if gold.heads[s.stack[0]] == s.i:
cost += label != -1 and label != gold.labels[s.stack[0]]
return cost
# If we're at EOL, then the left arc will add an arc to ROOT.
elif at_eol(s):
# Are we root?
if gold.labels[s.stack[0]] != -1:
# If we're at EOL, prefer to reduce or break over left-arc
if Reduce.is_valid(s, -1) or Break.is_valid(s, -1):
cost += gold.heads[s.stack[0]] != s.stack[0]
# Are we labelling correctly?
cost += label != -1 and label != gold.labels[s.stack[0]]
return cost
cost += head_in_buffer(s, s.stack[0], gold.heads)
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC and s.stack_len >= 2:
cost += gold.heads[s.stack[0]] == s.stack[-1]
if gold.labels[s.stack[0]] != -1:
cost += gold.heads[s.stack[0]] == s.stack[0]
return cost
cdef class RightArc:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return s.stack_len >= 1 and not at_eol(s)
@staticmethod
cdef int transition(State* state, int label) except -1:
add_dep(state, state.stack[0], state.i, label)
push_stack(state)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not RightArc.is_valid(s, label):
return 9000
cdef int cost
cost = 0
if gold.heads[s.i] == s.stack[0]:
cost += label != -1 and label != gold.labels[s.i]
return cost
# This indicates missing head
if gold.labels[s.i] != -1:
cost += head_in_buffer(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
cost += head_in_stack(s, s.i, gold.heads)
return cost
cdef class Break:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
cdef int i
if not USE_BREAK:
return False
elif at_eol(s):
return False
#elif NON_MONOTONIC:
# return True
else:
# In the Break transition paper, they have this constraint that prevents
# Break if stack is disconnected. But, if we're doing non-monotonic parsing,
# we prefer to relax this constraint. This is helpful in parsing whole
# documents, because then we don't get stuck with words on the stack.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[-i]].head == 0:
if seen_headless:
return False
else:
seen_headless = True
# TODO: Constituency constraints
return True
@staticmethod
cdef int transition(State* state, int label) except -1:
state.sent[state.i-1].sent_end = True
while state.stack_len != 0:
if get_s0(state).head == 0:
get_s0(state).dep = label
state.stack -= 1
state.stack_len -= 1
if not at_eol(state):
push_stack(state)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not Break.is_valid(s, label):
return 9000
# When we break, we Reduce all of the words on the stack.
cdef int cost = 0
# Number of deps between S0...Sn and N0...Nn
for i in range(s.i, s.sent_len):
cost += children_in_stack(s, i, gold.heads)
cost += head_in_stack(s, i, gold.heads)
return cost
cdef class Constituent:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
if s.stack_len < 1:
return False
return False
#else:
# # If all stack elements are popped, can't constituent
# for i in range(s.ctnts.stack_len):
# if not s.ctnts.is_popped[-i]:
# return True
# else:
# return False
@staticmethod
cdef int transition(State* state, int label) except -1:
return False
#cdef Constituent* bracket = new_bracket(state.ctnts)
#bracket.parent = NULL
#bracket.label = self.label
#bracket.head = get_s0(state)
#bracket.length = 0
#attach(bracket, state.ctnts.stack)
# Attach rightward children. They're in the brackets array somewhere
# between here and B0.
#cdef Constituent* node
#cdef const TokenC* node_gov
#for i in range(1, bracket - state.ctnts.stack):
# node = bracket - i
# node_gov = node.head + node.head.head
# if node_gov == bracket.head:
# attach(bracket, node)
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not Constituent.is_valid(s, label):
return 9000
raise Exception("Constituent move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#brackets = gold.brackets(get_s0(s).r_edge, {})
#if not brackets:
# return 2 # 2 loss for bad bracket, only 1 for good bracket bad label
# Index the current brackets in the state
#existing = set()
#for i in range(s.ctnt_len):
# if ctnt.end == s.r_edge and ctnt.label == self.label:
# existing.add(ctnt.start)
#cdef int loss = 2
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets and child.l_edge not in existing:
# if self.label in brackets[child.l_edge]
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef class Adjust:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return False
#if s.ctnts.stack_len < 2:
# return False
#cdef const Constituent* b1 = s.ctnts.stack[-1]
#cdef const Constituent* b0 = s.ctnts.stack[0]
#if (b1.head + b1.head.head) != b0.head:
# return False
#elif b0.head >= b1.head:
# return False
#elif b0 >= b1:
# return False
@staticmethod
cdef int transition(State* state, int label) except -1:
return False
#cdef Constituent* b0 = state.ctnts.stack[0]
#cdef Constituent* b1 = state.ctnts.stack[1]
#assert (b1.head + b1.head.head) == b0.head
#assert b0.head < b1.head
#assert b0 < b1
#attach(b0, b1)
## Pop B1 from stack, but keep B0 on top
#state.ctnts.stack -= 1
#state.ctnts.stack[0] = b0
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
if not Adjust.is_valid(s, label):
return 9000
raise Exception("Adjust move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#gold_starts = gold.brackets(get_s0(s).r_edge, {})
# Case 1: There are 0 brackets ending at this word.
# --> Cost is sunk, but must allow brackets to begin
#if not gold_starts:
# return 0
# Is the top bracket correct?
#gold_labels = gold_starts.get(s.ctnt.start, set())
# TODO: Case where we have a unary rule
# TODO: Case where two brackets end on this word, with top bracket starting
# before
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
#cdef int i
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets:
# if self.label in brackets[child.l_edge]:
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef class ArcEager(TransitionSystem):
@classmethod
def get_labels(cls, gold_parses):
@ -106,26 +406,33 @@ cdef class ArcEager(TransitionSystem):
t.move = move
t.label = label
if move == SHIFT:
t.do = _do_shift
t.get_cost = _shift_cost
t.is_valid = Shift.is_valid
t.do = Shift.transition
t.get_cost = Shift.cost
elif move == REDUCE:
t.do = _do_reduce
t.get_cost = _reduce_cost
t.is_valid = Reduce.is_valid
t.do = Reduce.transition
t.get_cost = Reduce.cost
elif move == LEFT:
t.do = _do_left
t.get_cost = _left_cost
t.is_valid = LeftArc.is_valid
t.do = LeftArc.transition
t.get_cost = LeftArc.cost
elif move == RIGHT:
t.do = _do_right
t.get_cost = _right_cost
t.is_valid = RightArc.is_valid
t.do = RightArc.transition
t.get_cost = RightArc.cost
elif move == BREAK:
t.do = _do_break
t.get_cost = _break_cost
t.is_valid = Break.is_valid
t.do = Break.transition
t.get_cost = Break.cost
elif move == CONSTITUENT:
t.do = _do_constituent
t.get_cost = _constituent_cost
t.is_valid = Constituent.is_valid
t.do = Constituent.transition
t.get_cost = Constituent.cost
elif move == ADJUST:
t.do = _do_adjust
t.get_cost = _adjust_cost
t.is_valid = Adjust.is_valid
t.do = Adjust.transition
t.get_cost = Adjust.cost
else:
raise Exception(move)
return t
@ -139,15 +446,15 @@ cdef class ArcEager(TransitionSystem):
if state.sent[i].head == 0 and state.sent[i].dep == 0:
state.sent[i].dep = root_label
cdef int set_valid(self, bint* output, const State* s) except -1:
cdef int set_valid(self, bint* output, const State* state) except -1:
cdef bint[N_MOVES] is_valid
is_valid[SHIFT] = _can_shift(s)
is_valid[REDUCE] = _can_reduce(s)
is_valid[LEFT] = _can_left(s)
is_valid[RIGHT] = _can_right(s)
is_valid[BREAK] = _can_break(s)
is_valid[CONSTITUENT] = _can_constituent(s)
is_valid[ADJUST] = _can_adjust(s)
is_valid[SHIFT] = Shift.is_valid(state, -1)
is_valid[REDUCE] = Reduce.is_valid(state, -1)
is_valid[LEFT] = LeftArc.is_valid(state, -1)
is_valid[RIGHT] = RightArc.is_valid(state, -1)
is_valid[BREAK] = Break.is_valid(state, -1)
is_valid[CONSTITUENT] = Constituent.is_valid(state, -1)
is_valid[ADJUST] = Adjust.is_valid(state, -1)
cdef int i
for i in range(self.n_moves):
output[i] = is_valid[self.c[i].move]
@ -156,14 +463,14 @@ cdef class ArcEager(TransitionSystem):
cdef Transition move
move.label = -1
cdef int[N_MOVES] move_costs
move_costs[SHIFT] = _shift_cost(&move, s, &gold.c)
move_costs[REDUCE] = _reduce_cost(&move, s, &gold.c)
move_costs[LEFT] = _left_cost(&move, s, &gold.c)
move_costs[RIGHT] = _right_cost(&move, s, &gold.c)
move_costs[BREAK] = _break_cost(&move, s, &gold.c)
move_costs[CONSTITUENT] = _constituent_cost(&move, s, &gold.c)
move_costs[ADJUST] = _adjust_cost(&move, s, &gold.c)
move_costs[SHIFT] = Shift.cost(s, &gold.c, -1)
move_costs[REDUCE] = Reduce.cost(s, &gold.c, -1)
move_costs[LEFT] = LeftArc.cost(s, &gold.c, -1)
move_costs[RIGHT] = RightArc.cost(s, &gold.c, -1)
move_costs[BREAK] = Break.cost(s, &gold.c, -1)
move_costs[CONSTITUENT] = Constituent.cost(s, &gold.c, -1)
move_costs[ADJUST] = Adjust.cost(s, &gold.c, -1)
cdef int i, label
cdef int* labels = gold.c.labels
cdef int* heads = gold.c.heads
@ -176,19 +483,19 @@ cdef class ArcEager(TransitionSystem):
label = labels[s.i]
if move.move == LEFT and heads[s.stack[0]] == s.i:
label = labels[s.stack[0]]
elif move.move == LEFT and at_eol(s) and (_can_reduce(s) or _can_break(s)):
elif move.move == LEFT and at_eol(s) and (Reduce.is_valid(s, -1) or Break.is_valid(s, 1)):
label = labels[s.stack[0]]
output[i] += move.label != label and label != -1
cdef Transition best_valid(self, const weight_t* scores, const State* s) except *:
cdef bint[N_MOVES] is_valid
is_valid[SHIFT] = _can_shift(s)
is_valid[REDUCE] = _can_reduce(s)
is_valid[LEFT] = _can_left(s)
is_valid[RIGHT] = _can_right(s)
is_valid[BREAK] = _can_break(s)
is_valid[CONSTITUENT] = _can_constituent(s)
is_valid[ADJUST] = _can_adjust(s)
is_valid[SHIFT] = Shift.is_valid(s, -1)
is_valid[REDUCE] = Reduce.is_valid(s, -1)
is_valid[LEFT] = LeftArc.is_valid(s, -1)
is_valid[RIGHT] = RightArc.is_valid(s, -1)
is_valid[BREAK] = Break.is_valid(s, -1)
is_valid[CONSTITUENT] = Constituent.is_valid(s, -1)
is_valid[ADJUST] = Adjust.is_valid(s, -1)
cdef Transition best
cdef weight_t score = MIN_SCORE
cdef int i
@ -209,302 +516,3 @@ cdef class ArcEager(TransitionSystem):
return best
cdef class Shift:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return not at_eol(s)
@staticmethod
cdef int transition(State* state, int label) except -1:
# Set the dep label, in case we need it after we reduce
if NON_MONOTONIC:
state.sent[state.i].dep = label
push_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not _can_shift(s):
return 9000
cost = 0
cost += head_in_stack(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
# If we can break, and there's no cost to doing so, we should
if _can_break(s) and _break_cost(self, s, gold) == 0:
cost += 1
return cost
cdef class Reduce:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 2 #and not missing_brackets(s)
else:
return s.stack_len >= 2 and has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
if NON_MONOTONIC and not has_head(get_s0(state)):
add_dep(state, state.stack[-1], state.stack[0], get_s0(state).dep)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Reduce.is_valid(s):
return 9000
cdef int cost = 0
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC:
cost += head_in_buffer(s, s.stack[0], gold.heads)
return cost
cdef class LeftArc:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if NON_MONOTONIC:
return s.stack_len >= 1 #and not missing_brackets(s)
else:
return s.stack_len >= 1 and not has_head(get_s0(s))
@staticmethod
cdef int transition(State* state, int label) except -1:
# Interpret left-arcs from EOL as attachment to root
if at_eol(state):
add_dep(state, state.stack[0], state.stack[0], label)
else:
add_dep(state, state.i, state.stack[0], label)
pop_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not _can_left(s):
return 9000
cost = 0
if gold.heads[s.stack[0]] == s.i:
cost += self.label != -1 and self.label != gold.labels[s.stack[0]]
return cost
# If we're at EOL, then the left arc will add an arc to ROOT.
elif at_eol(s):
# Are we root?
if gold.labels[s.stack[0]] != -1:
# If we're at EOL, prefer to reduce or break over left-arc
if _can_reduce(s) or _can_break(s):
cost += gold.heads[s.stack[0]] != s.stack[0]
# Are we labelling correctly?
cost += label != -1 and label != gold.labels[s.stack[0]]
return cost
cost += head_in_buffer(s, s.stack[0], gold.heads)
cost += children_in_buffer(s, s.stack[0], gold.heads)
if NON_MONOTONIC and s.stack_len >= 2:
cost += gold.heads[s.stack[0]] == s.stack[-1]
if gold.labels[s.stack[0]] != -1:
cost += gold.heads[s.stack[0]] == s.stack[0]
return cost
cdef class RightArc:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return s.stack_len >= 1 and not at_eol(s)
@staticmethod
cdef int transition(State* state, int label) except -1:
add_dep(state, state.stack[0], state.i, label)
push_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not RightArc.is_valid(s):
return 9000
cost = 0
if gold.heads[s.i] == s.stack[0]:
cost += label != -1 and self.label != gold.labels[s.i]
return cost
# This indicates missing head
if gold.labels[s.i] != -1:
cost += head_in_buffer(s, s.i, gold.heads)
cost += children_in_stack(s, s.i, gold.heads)
cost += head_in_stack(s, s.i, gold.heads)
return cost
cdef class Break:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
cdef int i
if not USE_BREAK:
return False
elif at_eol(s):
return False
#elif NON_MONOTONIC:
# return True
else:
# In the Break transition paper, they have this constraint that prevents
# Break if stack is disconnected. But, if we're doing non-monotonic parsing,
# we prefer to relax this constraint. This is helpful in parsing whole
# documents, because then we don't get stuck with words on the stack.
seen_headless = False
for i in range(s.stack_len):
if s.sent[s.stack[-i]].head == 0:
if seen_headless:
return False
else:
seen_headless = True
# TODO: Constituency constraints
return True
@staticmethod
cdef int transition(State* state, int label) except -1:
state.sent[state.i-1].sent_end = True
while state.stack_len != 0:
if get_s0(state).head == 0:
get_s0(state).dep = label
state.stack -= 1
state.stack_len -= 1
if not at_eol(state):
push_stack(state)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Break.is_valid(s):
return 9000
# When we break, we Reduce all of the words on the stack.
cdef int cost = 0
# Number of deps between S0...Sn and N0...Nn
for i in range(s.i, s.sent_len):
cost += children_in_stack(s, i, gold.heads)
cost += head_in_stack(s, i, gold.heads)
return cost
cdef class Constituent:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
if s.stack_len < 1:
return False
return False
#else:
# # If all stack elements are popped, can't constituent
# for i in range(s.ctnts.stack_len):
# if not s.ctnts.is_popped[-i]:
# return True
# else:
# return False
@staticmethod
cdef int transition(State* state, int label) except -1:
return False
#cdef Constituent* bracket = new_bracket(state.ctnts)
#bracket.parent = NULL
#bracket.label = self.label
#bracket.head = get_s0(state)
#bracket.length = 0
#attach(bracket, state.ctnts.stack)
# Attach rightward children. They're in the brackets array somewhere
# between here and B0.
#cdef Constituent* node
#cdef const TokenC* node_gov
#for i in range(1, bracket - state.ctnts.stack):
# node = bracket - i
# node_gov = node.head + node.head.head
# if node_gov == bracket.head:
# attach(bracket, node)
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Constituent.is_valid(s):
return 9000
raise Exception("Constituent move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#brackets = gold.brackets(get_s0(s).r_edge, {})
#if not brackets:
# return 2 # 2 loss for bad bracket, only 1 for good bracket bad label
# Index the current brackets in the state
#existing = set()
#for i in range(s.ctnt_len):
# if ctnt.end == s.r_edge and ctnt.label == self.label:
# existing.add(ctnt.start)
#cdef int loss = 2
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets and child.l_edge not in existing:
# if self.label in brackets[child.l_edge]
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss
cdef class Adjust:
@staticmethod
cdef inline bint is_valid(const State* s) nogil:
return False
#if s.ctnts.stack_len < 2:
# return False
#cdef const Constituent* b1 = s.ctnts.stack[-1]
#cdef const Constituent* b0 = s.ctnts.stack[0]
#if (b1.head + b1.head.head) != b0.head:
# return False
#elif b0.head >= b1.head:
# return False
#elif b0 >= b1:
# return False
@staticmethod
cdef int transition(State* state) except -1:
return False
#cdef Constituent* b0 = state.ctnts.stack[0]
#cdef Constituent* b1 = state.ctnts.stack[1]
#assert (b1.head + b1.head.head) == b0.head
#assert b0.head < b1.head
#assert b0 < b1
#attach(b0, b1)
## Pop B1 from stack, but keep B0 on top
#state.ctnts.stack -= 1
#state.ctnts.stack[0] = b0
@staticmethod
cdef int cost(const State* s, GoldParseC* gold, int label) except -1:
if not Adjust.is_valid(s):
return 9000
raise Exception("Adjust move should be disabled currently")
# The gold standard is indexed by end, then by start, then a set of labels
#gold_starts = gold.brackets(get_s0(s).r_edge, {})
# Case 1: There are 0 brackets ending at this word.
# --> Cost is sunk, but must allow brackets to begin
#if not gold_starts:
# return 0
# Is the top bracket correct?
#gold_labels = gold_starts.get(s.ctnt.start, set())
# TODO: Case where we have a unary rule
# TODO: Case where two brackets end on this word, with top bracket starting
# before
#cdef const TokenC* child
#cdef const TokenC* s0 = get_s0(s)
#cdef int n_left = count_left_kids(s0)
#cdef int i
# Iterate over the possible start positions, and check whether we have a
# (start, end, label) match to the gold tree
#for i in range(1, n_left):
# child = get_left(s, s0, i)
# if child.l_edge in brackets:
# if self.label in brackets[child.l_edge]:
# return 0
# else:
# loss = 1 # If we see the start position, set loss to 1
#return loss

View File

@ -50,24 +50,6 @@ cdef bint _entity_is_sunk(const State *s, Transition* golds) except -1:
else:
return False
cdef int _is_valid(int act, int label, const State* s) except -1:
if act == MISSING:
return False
elif act == BEGIN:
return label != 0 and not entity_is_open(s)
elif act == IN:
return entity_is_open(s) and label != 0 and s.ent.label == label
elif act == LAST:
return entity_is_open(s) and label != 0 and s.ent.label == label
elif act == UNIT:
return label != 0 and not entity_is_open(s)
elif act == OUT:
return not entity_is_open(s)
else:
raise UnknownMove(act, label)
cdef class BiluoPushDown(TransitionSystem):
@classmethod
def get_labels(cls, gold_tuples):
@ -122,8 +104,32 @@ cdef class BiluoPushDown(TransitionSystem):
t.clas = clas
t.move = move
t.label = label
t.do = do_funcs[move]
t.get_cost = _get_cost
if move == MISSING:
t.is_valid = Missing.is_valid
t.do = Missing.transition
t.get_cost = Missing.cost
elif move == BEGIN:
t.is_valid = Begin.is_valid
t.do = Begin.transition
t.get_cost = Begin.cost
elif move == IN:
t.is_valid = In.is_valid
t.do = In.transition
t.get_cost = In.cost
elif move == LAST:
t.is_valid = Last.is_valid
t.do = Last.transition
t.get_cost = Last.cost
elif move == UNIT:
t.is_valid = Unit.is_valid
t.do = Unit.transition
t.get_cost = Unit.cost
elif move == OUT:
t.is_valid = Out.is_valid
t.do = Out.transition
t.get_cost = Out.cost
else:
raise Exception(move)
return t
cdef Transition best_valid(self, const weight_t* scores, const State* s) except *:
@ -133,7 +139,7 @@ cdef class BiluoPushDown(TransitionSystem):
cdef int i
for i in range(self.n_moves):
m = &self.c[i]
if _is_valid(m.move, m.label, s) and scores[i] > score:
if m.is_valid(s, m.label) and scores[i] > score:
best = i
score = scores[i]
assert best >= 0
@ -145,138 +151,185 @@ cdef class BiluoPushDown(TransitionSystem):
cdef int i
for i in range(self.n_moves):
m = &self.c[i]
output[i] = _is_valid(m.move, m.label, s)
output[i] = m.is_valid(s, m.label)
cdef int _get_cost(const Transition* self, const State* s, GoldParseC* gold) except -1:
if not _is_valid(self.move, self.label, s):
cdef class Missing:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return False
@staticmethod
cdef int transition(State* s, int label) except -1:
raise NotImplementedError
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
return 9000
cdef bint is_sunk = _entity_is_sunk(s, gold.ner)
cdef int next_act = gold.ner[s.i+1].move if s.i < s.sent_len else OUT
cdef bint is_gold = _is_gold(self.move, self.label, gold.ner[s.i].move,
gold.ner[s.i].label, next_act, is_sunk)
return not is_gold
cdef bint _is_gold(int act, int tag, int g_act, int g_tag,
int next_act, bint is_sunk):
if g_act == MISSING:
return True
if act == BEGIN:
cdef class Begin:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return label != 0 and not entity_is_open(s)
@staticmethod
cdef int transition(State* s, int label) except -1:
s.ent += 1
s.ents_len += 1
s.ent.start = s.i
s.ent.label = label
s.ent.end = 0
s.sent[s.i].ent_iob = 3
s.sent[s.i].ent_type = label
s.i += 1
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
cdef int g_act = gold.ner[s.i].move
cdef int g_tag = gold.ner[s.i].label
if g_act == BEGIN:
# B, Gold B --> Label match
return tag == g_tag
return label != g_tag
else:
# B, Gold I --> False (P)
# B, Gold L --> False (P)
# B, Gold O --> False (P)
# B, Gold U --> False (P)
return False
elif act == IN:
return 1
cdef class In:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return entity_is_open(s) and label != 0 and s.ent.label == label
@staticmethod
cdef int transition(State* s, int label) except -1:
s.sent[s.i].ent_iob = 1
s.sent[s.i].ent_type = label
s.i += 1
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
cdef int next_act = gold.ner[s.i+1].move if s.i < s.sent_len else OUT
cdef int g_act = gold.ner[s.i].move
cdef int g_tag = gold.ner[s.i].label
cdef bint is_sunk = _entity_is_sunk(s, gold.ner)
if g_act == BEGIN:
# I, Gold B --> True (P of bad open entity sunk, R of this entity sunk)
return True
return 0
elif g_act == IN:
# I, Gold I --> True (label forced by prev, if mismatch, P and R both sunk)
return True
return 0
elif g_act == LAST:
# I, Gold L --> True iff this entity sunk and next tag == O
return is_sunk and (next_act == OUT or next_act == MISSING)
return not (is_sunk and (next_act == OUT or next_act == MISSING))
elif g_act == OUT:
# I, Gold O --> True iff next tag == O
return next_act == OUT or next_act == MISSING
return not (next_act == OUT or next_act == MISSING)
elif g_act == UNIT:
# I, Gold U --> True iff next tag == O
return next_act == OUT
elif act == LAST:
return next_act != OUT
cdef class Last:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return entity_is_open(s) and label != 0 and s.ent.label == label
@staticmethod
cdef int transition(State* s, int label) except -1:
s.ent.end = s.i+1
s.sent[s.i].ent_iob = 1
s.sent[s.i].ent_type = label
s.i += 1
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
cdef int g_act = gold.ner[s.i].move
cdef int g_tag = gold.ner[s.i].label
if g_act == BEGIN:
# L, Gold B --> True
return True
return 0
elif g_act == IN:
# L, Gold I --> True iff this entity sunk
return is_sunk
return not _entity_is_sunk(s, gold.ner)
elif g_act == LAST:
# L, Gold L --> True
return True
return 0
elif g_act == OUT:
# L, Gold O --> True
return True
return 0
elif g_act == UNIT:
# L, Gold U --> True
return True
elif act == OUT:
if g_act == BEGIN:
# O, Gold B --> False
return False
elif g_act == IN:
# O, Gold I --> True
return True
elif g_act == LAST:
# O, Gold L --> True
return True
elif g_act == OUT:
# O, Gold O --> True
return True
elif g_act == UNIT:
# O, Gold U --> False
return False
elif act == UNIT:
return 0
cdef class Unit:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return label != 0 and not entity_is_open(s)
@staticmethod
cdef int transition(State* s, int label) except -1:
s.ent += 1
s.ents_len += 1
s.ent.start = s.i
s.ent.label = label
s.ent.end = s.i+1
s.sent[s.i].ent_iob = 3
s.sent[s.i].ent_type = label
s.i += 1
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
cdef int g_act = gold.ner[s.i].move
cdef int g_tag = gold.ner[s.i].label
if g_act == UNIT:
# U, Gold U --> True iff tag match
return tag == g_tag
return label != g_tag
else:
# U, Gold B --> False
# U, Gold I --> False
# U, Gold L --> False
# U, Gold O --> False
return False
return 1
cdef int _do_begin(const Transition* self, State* s) except -1:
s.ent += 1
s.ents_len += 1
s.ent.start = s.i
s.ent.label = self.label
s.ent.end = 0
s.sent[s.i].ent_iob = 3
s.sent[s.i].ent_type = self.label
s.i += 1
cdef class Out:
@staticmethod
cdef bint is_valid(const State* s, int label) except -1:
return not entity_is_open(s)
@staticmethod
cdef int transition(State* s, int label) except -1:
s.sent[s.i].ent_iob = 2
s.i += 1
@staticmethod
cdef int cost(const State* s, const GoldParseC* gold, int label) except -1:
cdef int g_act = gold.ner[s.i].move
cdef int g_tag = gold.ner[s.i].label
cdef int _do_in(const Transition* self, State* s) except -1:
s.sent[s.i].ent_iob = 1
s.sent[s.i].ent_type = self.label
s.i += 1
cdef int _do_last(const Transition* self, State* s) except -1:
s.ent.end = s.i+1
s.sent[s.i].ent_iob = 1
s.sent[s.i].ent_type = self.label
s.i += 1
cdef int _do_unit(const Transition* self, State* s) except -1:
s.ent += 1
s.ents_len += 1
s.ent.start = s.i
s.ent.label = self.label
s.ent.end = s.i+1
s.sent[s.i].ent_iob = 3
s.sent[s.i].ent_type = self.label
s.i += 1
cdef int _do_out(const Transition* self, State* s) except -1:
s.sent[s.i].ent_iob = 2
s.i += 1
do_funcs[BEGIN] = _do_begin
do_funcs[IN] = _do_in
do_funcs[LAST] = _do_last
do_funcs[UNIT] = _do_unit
do_funcs[OUT] = _do_out
if g_act == BEGIN:
# O, Gold B --> False
return 1
elif g_act == IN:
# O, Gold I --> True
return 0
elif g_act == LAST:
# O, Gold L --> True
return 0
elif g_act == OUT:
# O, Gold O --> True
return 0
elif g_act == UNIT:
# O, Gold U --> False
return 1
class OracleError(Exception):

View File

@ -106,7 +106,7 @@ cdef class Parser:
fill_context(context, state)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, state)
guess.do(&guess, state)
guess.do(state, guess.label)
self.moves.finalize_state(state)
tokens.set_parse(state.sent)
@ -136,9 +136,9 @@ cdef class Parser:
scores = self.model.score(context)
guess = self.moves.best_valid(scores, state)
best = self.moves.best_gold(scores, state, gold)
cost = guess.get_cost(&guess, state, &gold.c)
cost = guess.get_cost(state, &gold.c, guess.label)
self.model.update(context, guess.clas, best.clas, cost)
guess.do(&guess, state)
guess.do(state, guess.label)
loss += cost
return loss
@ -180,11 +180,9 @@ cdef class Parser:
self.moves.set_costs(beam.costs[i], state, gold)
if follow_gold:
for j in range(self.moves.n_moves):
beam.is_valid[i][j] = beam.costs[i][j] == 0
beam.is_valid[i][j] *= beam.costs[i][j] == 0
beam.advance(_transition_state, <void*>self.moves.c)
state = <State*>beam.at(0)
if state.sent[state.i].sent_end:
beam.size = int(beam.size / 2)
beam.check_done(_check_final_state, NULL)
def _count_feats(self, dict counts, Tokens tokens, list hist, int inc):
@ -201,7 +199,7 @@ cdef class Parser:
fill_context(context, state)
feats = self.model._extractor.get_feats(context, &n_feats)
count_feats(counts[clas], feats, n_feats, inc)
self.moves.c[clas].do(&self.moves.c[clas], state)
self.moves.c[clas].do(state, self.moves.c[clas].label)
# These are passed as callbacks to thinc.search.Beam
@ -211,7 +209,7 @@ cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves)
src = <const State*>_src
moves = <const Transition*>_moves
copy_state(dest, src)
moves[clas].do(&moves[clas], dest)
moves[clas].do(dest, moves[clas].label)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:

View File

@ -15,14 +15,14 @@ cdef struct Transition:
weight_t score
int (*get_cost)(const Transition* self, const State* state, GoldParseC* gold) except -1
int (*do)(const Transition* self, State* state) except -1
bint (*is_valid)(const State* state, int label) except -1
int (*get_cost)(const State* state, const GoldParseC* gold, int label) except -1
int (*do)(State* state, int label) except -1
ctypedef int (*get_cost_func_t)(const Transition* self, const State* state,
GoldParseC* gold) except -1
ctypedef int (*get_cost_func_t)(const State* state, const GoldParseC* gold, int label) except -1
ctypedef int (*do_func_t)(const Transition* self, State* state) except -1
ctypedef int (*do_func_t)(State* state, int label) except -1
cdef class TransitionSystem:

View File

@ -51,7 +51,7 @@ cdef class TransitionSystem:
cdef int set_costs(self, int* output, const State* s, GoldParse gold) except -1:
cdef int i
for i in range(self.n_moves):
output[i] = self.c[i].get_cost(&self.c[i], s, &gold.c)
output[i] = self.c[i].get_cost(s, &gold.c, self.c[i].label)
cdef Transition best_gold(self, const weight_t* scores, const State* s,
GoldParse gold) except *:
@ -59,7 +59,7 @@ cdef class TransitionSystem:
cdef weight_t score = MIN_SCORE
cdef int i
for i in range(self.n_moves):
cost = self.c[i].get_cost(&self.c[i], s, &gold.c)
cost = self.c[i].get_cost(s, &gold.c, self.c[i].label)
if scores[i] > score and cost == 0:
best = self.c[i]
score = scores[i]