Add Language.pipe_as_tuples

As part of the transition to v4, add `Language.pipe_as_tuples()` and
deprecate `Language.pipe(as_tuples=True)`.
This commit is contained in:
Adriane Boyd 2023-02-06 11:35:32 +01:00
parent 9a454676f3
commit 6c268d4ed9
5 changed files with 91 additions and 18 deletions

View File

@ -215,6 +215,9 @@ class Warnings(metaclass=ErrorsWithCodes):
W123 = ("Argument `enable` with value {enable} does not contain all values specified in the config option "
"`enabled` ({enabled}). Be aware that this might affect other components in your pipeline.")
W124 = ("{host}:{port} is already in use, using the nearest available port {serve_port} as an alternative.")
W125 = ("As of spaCy v3.6, `nlp.pipe(as_tuples=True)` has been deprecated "
"in favor of `nlp.pipe_as_tuples()`. `nlp.pipe(as_tuples=True)` "
"will be removed in spaCy v4.0.")
class Errors(metaclass=ErrorsWithCodes):

View File

@ -1516,6 +1516,7 @@ class Language:
DOCS: https://spacy.io/api/language#pipe
"""
if as_tuples:
warnings.warn(Warnings.W125, DeprecationWarning)
texts = cast(Iterable[Tuple[Union[str, Doc], _AnyContext]], texts)
docs_with_contexts = (
self._ensure_doc_with_context(text, context) for text, context in texts
@ -1574,6 +1575,31 @@ class Language:
for doc in docs:
yield doc
def pipe_as_tuples(
self,
texts: Iterable[Tuple[Union[str, Doc], _AnyContext]],
*,
batch_size: Optional[int] = None,
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
n_process: int = 1,
) -> Iterator[Tuple[Doc, _AnyContext]]:
docs_with_contexts = (
self._ensure_doc_with_context(text, context) for text, context in texts
)
docs = self.pipe(
docs_with_contexts,
batch_size=batch_size,
disable=disable,
n_process=n_process,
component_cfg=component_cfg,
)
for doc in docs:
context = doc._context
doc._context = None
yield (doc, context)
return
def _has_gpu_model(self, disable: Iterable[str]):
for name, proc in self.pipeline:
is_trainable = hasattr(proc, "is_trainable") and proc.is_trainable # type: ignore

View File

@ -362,6 +362,22 @@ def test_language_pipe_error_handler_custom(en_vocab, n_process):
assert [doc.text for doc in docs] == ["TEXT 111", "TEXT 333", "TEXT 666"]
def test_language_pipe_as_tuples():
nlp = English()
texts = [
("TEXT 111", 111),
("TEXT 222", 222),
("TEXT 333", 333),
("TEXT 342", 342),
("TEXT 666", 666),
]
with pytest.warns(DeprecationWarning):
docs_contexts = list(nlp.pipe(texts, as_tuples=True))
assert len(docs_contexts) == len(texts)
docs_contexts = list(nlp.pipe_as_tuples(texts))
assert len(docs_contexts) == len(texts)
@pytest.mark.parametrize("n_process", [1, 2])
def test_language_pipe_error_handler_input_as_tuples(en_vocab, n_process):
"""Test the error handling of nlp.pipe with input as tuples"""
@ -378,11 +394,11 @@ def test_language_pipe_error_handler_input_as_tuples(en_vocab, n_process):
("TEXT 666", 666),
]
with pytest.raises(ValueError):
list(nlp.pipe(texts, as_tuples=True))
list(nlp.pipe_as_tuples(texts))
nlp.set_error_handler(warn_error)
logger = logging.getLogger("spacy")
with mock.patch.object(logger, "warning") as mock_warning:
tuples = list(nlp.pipe(texts, as_tuples=True, n_process=n_process))
tuples = list(nlp.pipe_as_tuples(texts))
# HACK/TODO? the warnings in child processes don't seem to be
# detected by the mock logger
if n_process == 1:

View File

@ -198,16 +198,43 @@ tokenization is skipped but the rest of the pipeline is run.
> assert doc.has_annotation("DEP")
> ```
| Name | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings (or `Doc` objects). ~~Iterable[Union[str, Doc]]~~ |
| _keyword-only_ | |
| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
| Name | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `texts` | A sequence of strings (or `Doc` objects). ~~Iterable[Union[str, Doc]]~~ |
| _keyword-only_ | |
| `as_tuples` | Deprecated in v3.6 in favor of [`Language.pipe_as_tuples`](#pipe_as_tuples). If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original text. ~~Doc~~ |
## Language.pipe_as_tuples {id="pipe_as_tuples",tag="method",version="3.6"}
Process `(text, context)` tuples as a stream, and yield `(Doc, context)` tuples
in order. This is usually more efficient than processing texts one-by-one.
> #### Example
>
> ```python
> texts = [
> ("One document.", {"id": 1}),
> "...",
> ("Lots of documents", {"id": 1000}),
> ]
> for doc, context in nlp.pipe_as_tuples(texts, batch_size=50):
> assert doc.has_annotation("DEP")
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings. ~~Iterable[Tuple(str, Any)]~~ |
| _keyword-only_ | |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `n_process` | Number of processors to use. Defaults to `1`. ~~int~~ |
| **YIELDS** | Documents in the order of the original texts. ~~Tuple(Doc, Any)~~ |
## Language.set_error_handler {id="set_error_handler",tag="method",version="3"}

View File

@ -88,11 +88,12 @@ have to call `list()` on it first:
</Infobox>
You can use the `as_tuples` option to pass additional context along with each
doc when using [`nlp.pipe`](/api/language#pipe). If `as_tuples` is `True`, then
the input should be a sequence of `(text, context)` tuples and the output will
be a sequence of `(doc, context)` tuples. For example, you can pass metadata in
the context and save it in a [custom attribute](#custom-components-attributes):
You can use the [`nlp.pipe_as_tuples`](/api/language#pipe_as_tuples) method to
pass additional context along with each doc when using the functionality of
[`nlp.pipe`](/api/language#pipe). The input should be a sequence of
`(text, context)` tuples and the output will be a sequence of `(doc, context)`
tuples. For example, you can pass metadata in the context and save it in a
[custom attribute](#custom-components-attributes):
```python {executable="true"}
import spacy
@ -107,7 +108,7 @@ text_tuples = [
]
nlp = spacy.load("en_core_web_sm")
doc_tuples = nlp.pipe(text_tuples, as_tuples=True)
doc_tuples = nlp.pipe_as_tuples(text_tuples)
docs = []
for doc, context in doc_tuples: