mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Bug fixes and options for TextCategorizer (#3472)
* Fix code for bag-of-words feature extraction The _ml.py module had a redundant copy of a function to extract unigram bag-of-words features, except one had a bug that set values to 0. Another function allowed extraction of bigram features. Replace all three with a new function that supports arbitrary ngram sizes and also allows control of which attribute is used (e.g. ORTH, LOWER, etc). * Support 'bow' architecture for TextCategorizer This allows efficient ngram bag-of-words models, which are better when the classifier needs to run quickly, especially when the texts are long. Pass architecture="bow" to use it. The extra arguments ngram_size and attr are also available, e.g. ngram_size=2 means unigram and bigram features will be extracted. * Fix size limits in train_textcat example * Explain architectures better in docs
This commit is contained in:
parent
06bf130890
commit
6c783f8045
|
@ -43,7 +43,11 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||
if "textcat" not in nlp.pipe_names:
|
||||
textcat = nlp.create_pipe(
|
||||
"textcat", config={"architecture": "simple_cnn", "exclusive_classes": True}
|
||||
"textcat",
|
||||
config={
|
||||
"exclusive_classes": True,
|
||||
"architecture": "simple_cnn",
|
||||
}
|
||||
)
|
||||
nlp.add_pipe(textcat, last=True)
|
||||
# otherwise, get it, so we can add labels to it
|
||||
|
@ -56,7 +60,9 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
|
||||
# load the IMDB dataset
|
||||
print("Loading IMDB data...")
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=n_texts)
|
||||
(train_texts, train_cats), (dev_texts, dev_cats) = load_data()
|
||||
train_texts = train_texts[:n_texts]
|
||||
train_cats = train_cats[:n_texts]
|
||||
print(
|
||||
"Using {} examples ({} training, {} evaluation)".format(
|
||||
n_texts, len(train_texts), len(dev_texts)
|
||||
|
|
94
spacy/_ml.py
94
spacy/_ml.py
|
@ -81,18 +81,6 @@ def _zero_init(model):
|
|||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.0):
|
||||
keys = [doc.to_array(LOWER) for doc in docs]
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = numpy.array([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = numpy.concatenate(keys)
|
||||
vals = numpy.zeros(keys.shape, dtype='f')
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def with_cpu(ops, model):
|
||||
"""Wrap a model that should run on CPU, transferring inputs and outputs
|
||||
as necessary."""
|
||||
|
@ -133,20 +121,31 @@ def _to_device(ops, X):
|
|||
return ops.asarray(X)
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc_bigrams(docs, drop=0.0):
|
||||
unigrams = [doc.to_array(LOWER) for doc in docs]
|
||||
ops = Model.ops
|
||||
bigrams = [ops.ngrams(2, doc_unis) for doc_unis in unigrams]
|
||||
keys = [ops.xp.concatenate(feats) for feats in zip(unigrams, bigrams)]
|
||||
keys, vals = zip(*[ops.xp.unique(k, return_counts=True) for k in keys])
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
||||
keys = ops.xp.concatenate(keys)
|
||||
vals = ops.asarray(ops.xp.concatenate(vals), dtype="f")
|
||||
return (keys, vals, lengths), None
|
||||
class extract_ngrams(Model):
|
||||
def __init__(self, ngram_size, attr=LOWER):
|
||||
Model.__init__(self)
|
||||
self.ngram_size = ngram_size
|
||||
self.attr = attr
|
||||
|
||||
def begin_update(self, docs, drop=0.0):
|
||||
batch_keys = []
|
||||
batch_vals = []
|
||||
for doc in docs:
|
||||
unigrams = doc.to_array([self.attr])
|
||||
ngrams = [unigrams]
|
||||
for n in range(2, self.ngram_size + 1):
|
||||
ngrams.append(self.ops.ngrams(n, unigrams))
|
||||
keys = self.ops.xp.concatenate(ngrams)
|
||||
keys, vals = self.ops.xp.unique(keys, return_counts=True)
|
||||
batch_keys.append(keys)
|
||||
batch_vals.append(vals)
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = self.ops.asarray([arr.shape[0] for arr in batch_keys], dtype=numpy.int_)
|
||||
batch_keys = self.ops.xp.concatenate(batch_keys)
|
||||
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
|
||||
return (batch_keys, batch_vals, lengths), None
|
||||
|
||||
|
||||
@describe.on_data(
|
||||
|
@ -486,16 +485,6 @@ def zero_init(model):
|
|||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def preprocess_doc(docs, drop=0.0):
|
||||
keys = [doc.to_array([LOWER]) for doc in docs]
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([arr.shape[0] for arr in keys])
|
||||
keys = ops.xp.concatenate(keys)
|
||||
vals = ops.allocate(keys.shape[0]) + 1
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.0):
|
||||
return X[i], None
|
||||
|
@ -602,10 +591,8 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
linear_model = (
|
||||
_preprocess_doc
|
||||
>> with_cpu(Model.ops, LinearModel(nr_class))
|
||||
)
|
||||
linear_model = build_bow_text_classifier(
|
||||
nr_class, ngram_size=cfg.get("ngram_size", 1), no_output_layer=True)
|
||||
if cfg.get('exclusive_classes'):
|
||||
output_layer = Softmax(nr_class, nr_class * 2)
|
||||
else:
|
||||
|
@ -623,6 +610,33 @@ def build_text_classifier(nr_class, width=64, **cfg):
|
|||
return model
|
||||
|
||||
|
||||
def build_bow_text_classifier(nr_class, ngram_size=1, exclusive_classes=False,
|
||||
no_output_layer=False, **cfg):
|
||||
with Model.define_operators({">>": chain}):
|
||||
model = (
|
||||
extract_ngrams(ngram_size, attr=ORTH)
|
||||
>> with_cpu(Model.ops,
|
||||
LinearModel(nr_class)
|
||||
)
|
||||
)
|
||||
if not no_output_layer:
|
||||
model = model >> (cpu_softmax if exclusive_classes else logistic)
|
||||
model.nO = nr_class
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def cpu_softmax(X, drop=0.):
|
||||
ops = NumpyOps()
|
||||
|
||||
Y = ops.softmax(X)
|
||||
|
||||
def cpu_softmax_backward(dY, sgd=None):
|
||||
return dY
|
||||
|
||||
return ops.softmax(X), cpu_softmax_backward
|
||||
|
||||
|
||||
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
|
||||
"""
|
||||
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
||||
|
|
|
@ -25,6 +25,7 @@ from ..attrs import POS, ID
|
|||
from ..parts_of_speech import X
|
||||
from .._ml import Tok2Vec, build_tagger_model
|
||||
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from .._ml import build_bow_text_classifier
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
from .._ml import masked_language_model, create_default_optimizer
|
||||
from ..errors import Errors, TempErrors
|
||||
|
@ -876,6 +877,8 @@ class TextCategorizer(Pipe):
|
|||
if cfg.get("architecture") == "simple_cnn":
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size, **cfg)
|
||||
return build_simple_cnn_text_classifier(tok2vec, nr_class, **cfg)
|
||||
elif cfg.get("architecture") == "bow":
|
||||
return build_bow_text_classifier(nr_class, **cfg)
|
||||
else:
|
||||
return build_text_classifier(nr_class, **cfg)
|
||||
|
||||
|
|
|
@ -58,8 +58,9 @@ argument.
|
|||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `"ensemble"` | **Default:** Stacked ensemble of a unigram bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. |
|
||||
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. |
|
||||
| `"ensemble"` | **Default:** Stacked ensemble of a bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. The "ngram_size" and "attr" arguments can be used to configure the feature extraction for the bag-of-words model.
|
||||
| `"simple_cnn"` | A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. This architecture is usually less accurate than the ensemble, but runs faster. |
|
||||
| `"bow"` | An ngram "bag-of-words" model. This architecture should run much faster than the others, but may not be as accurate, especially if texts are short. The features extracted can be controlled using the keyword arguments ngram_size and attr. For instance, `ngram_size=3` and `attr="lower"` would give lower-cased unigram, trigram and bigram features. 2, 3 or 4 are usually good choices of ngram size. |
|
||||
|
||||
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user