mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Merge branch 'master' of ssh://github.com/explosion/spaCy
This commit is contained in:
commit
6c7ae55084
43
README.rst
43
README.rst
|
@ -6,7 +6,7 @@ Cython. spaCy is built on the very latest research, but it isn't researchware.
|
|||
It was designed from day 1 to be used in real products. It's commercial
|
||||
open-source software, released under the MIT license.
|
||||
|
||||
💫 **Version 1.3 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
|
||||
💫 **Version 1.4 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
|
||||
|
||||
.. image:: http://i.imgur.com/wFvLZyJ.png
|
||||
:target: https://travis-ci.org/explosion/spaCy
|
||||
|
@ -241,8 +241,45 @@ calling ``spacy.load()``, or by passing a ``path`` argument to the ``spacy.en.En
|
|||
Changelog
|
||||
=========
|
||||
|
||||
2016-12-03 `v1.3.0 <https://github.com/explosion/spaCy/releases>`_: *Improve API consistency*
|
||||
---------------------------------------------------------------------------------------------
|
||||
2016-12-18 `v1.4.0 <https://github.com/explosion/spaCy/releases>`_: *Improved language data and alpha Dutch support*
|
||||
--------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
**✨ Major features and improvements**
|
||||
|
||||
* **NEW:** Alpha support for Dutch tokenization.
|
||||
* Reorganise and improve format for language data.
|
||||
* Add shared tag map, entity rules, emoticons and punctuation to language data.
|
||||
* Convert entity rules, morphological rules and lemmatization rules from JSON to Python.
|
||||
* Update language data for English, German, Spanish, French, Italian and Portuguese.
|
||||
|
||||
**🔴 Bug fixes**
|
||||
|
||||
* Fix issue `#649 <https://github.com/explosion/spaCy/issues/649>`_: Update and reorganise stop lists.
|
||||
* Fix issue `#672 <https://github.com/explosion/spaCy/issues/672>`_: Make ``token.ent_iob_`` return unicode.
|
||||
* Fix issue `#674 <https://github.com/explosion/spaCy/issues/674>`_: Add missing lemmas for contracted forms of "be" to ``TOKENIZER_EXCEPTIONS``.
|
||||
* Fix issue `#683 <https://github.com/explosion/spaCy/issues/683>`_ ``Morphology`` class now supplies tag map value for the special space tag if it's missing.
|
||||
* Fix issue `#684 <https://github.com/explosion/spaCy/issues/684>`_: Ensure ``spacy.en.English()`` loads the Glove vector data if available. Previously was inconsistent with behaviour of ``spacy.load('en')``.
|
||||
* Fix issue `#685 <https://github.com/explosion/spaCy/issues/685>`_: Expand ``TOKENIZER_EXCEPTIONS`` with unicode apostrophe (``’``).
|
||||
* Fix issue `#689 <https://github.com/explosion/spaCy/issues/689>`_: Correct typo in ``STOP_WORDS``.
|
||||
* Fix issue `#691 <https://github.com/explosion/spaCy/issues/691>`_: Add tokenizer exceptions for "gonna" and "Gonna".
|
||||
|
||||
**⚠️ Backwards incompatibilities**
|
||||
|
||||
No changes to the public, documented API, but the previously undocumented language data and model initialisation processes have been refactored and reorganised. If you were relying on the ``bin/init_model.py`` script, see the new `spaCy Developer Resources <https://github.com/explosion/spacy-dev-resources>`_ repo. Code that references internals of the ``spacy.en`` or ``spacy.de`` packages should also be reviewed before updating to this version.
|
||||
|
||||
**📖 Documentation and examples**
|
||||
|
||||
* **NEW:** `"Adding languages" <https://spacy.io/docs/usage/adding-languages>`_ workflow.
|
||||
* **NEW:** `"Part-of-speech tagging" <https://spacy.io/docs/usage/pos-tagging>`_ workflow.
|
||||
* **NEW:** `spaCy Developer Resources <https://github.com/explosion/spacy-dev-resources>`_ repo – scripts, tools and resources for developing spaCy.
|
||||
* Fix various typos and inconsistencies.
|
||||
|
||||
**👥 Contributors**
|
||||
|
||||
Thanks to `@dafnevk <https://github.com/dafnevk>`_, `@jvdzwaan <https://github.com/jvdzwaan>`_, `@RvanNieuwpoort <https://github.com/RvanNieuwpoort>`_, `@wrvhage <https://github.com/wrvhage>`_, `@jaspb <https://github.com/jaspb>`_, `@savvopoulos <https://github.com/savvopoulos>`_ and `@davedwards <https://github.com/davedwards>`_ for the pull requests!
|
||||
|
||||
2016-12-03 `v1.3.0 <https://github.com/explosion/spaCy/releases/tag/v1.3.0>`_: *Improve API consistency*
|
||||
--------------------------------------------------------------------------------------------------------
|
||||
|
||||
**✨ API improvements**
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
"COMPANY_URL": "https://explosion.ai",
|
||||
"DEMOS_URL": "https://demos.explosion.ai",
|
||||
|
||||
"SPACY_VERSION": "1.2",
|
||||
"SPACY_VERSION": "1.4",
|
||||
"LATEST_NEWS": {
|
||||
"url": "https://explosion.ai/blog/spacy-user-survey",
|
||||
"title": "The results of the spaCy user survey"
|
||||
|
@ -53,7 +53,7 @@
|
|||
}
|
||||
},
|
||||
|
||||
"V_CSS": "1.9",
|
||||
"V_CSS": "1.10",
|
||||
"V_JS": "1.0",
|
||||
"DEFAULT_SYNTAX" : "python",
|
||||
"ANALYTICS": "UA-58931649-1",
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
"Loading the pipeline": "language-processing-pipeline",
|
||||
"Processing text": "processing-text",
|
||||
"spaCy's data model": "data-model",
|
||||
"POS tagging": "pos-tagging",
|
||||
"Using the parse": "dependency-parse",
|
||||
"Entity recognition": "entity-recognition",
|
||||
"Custom pipelines": "customizing-pipeline",
|
||||
|
@ -15,7 +16,8 @@
|
|||
"Word vectors": "word-vectors-similarities",
|
||||
"Deep learning": "deep-learning",
|
||||
"Custom tokenization": "customizing-tokenizer",
|
||||
"Training": "training"
|
||||
"Training": "training",
|
||||
"Adding languages": "adding-languages"
|
||||
},
|
||||
"Examples": {
|
||||
"Tutorials": "tutorials",
|
||||
|
@ -82,6 +84,16 @@
|
|||
"title": "Training the tagger, parser and entity recognizer"
|
||||
},
|
||||
|
||||
"pos-tagging": {
|
||||
"title": "Part-of-speech tagging",
|
||||
"next": "dependency-parse"
|
||||
},
|
||||
|
||||
"adding-languages": {
|
||||
"title": "Adding languages",
|
||||
"next": "training"
|
||||
},
|
||||
|
||||
"showcase": {
|
||||
"title": "Showcase",
|
||||
|
||||
|
@ -105,6 +117,11 @@
|
|||
"url": "https://github.com/avisingh599/visual-qa",
|
||||
"author": "Avi Singh",
|
||||
"description": "Keras-based LSTM/CNN models for Visual Question Answering."
|
||||
},
|
||||
"rasa_nlu": {
|
||||
"url": "https://github.com/golastmile/rasa_nlu",
|
||||
"author": "LASTMILE",
|
||||
"description": "High level APIs for building your own language parser using existing NLP and ML libraries."
|
||||
}
|
||||
},
|
||||
"visualizations": {
|
||||
|
@ -169,6 +186,11 @@
|
|||
}
|
||||
},
|
||||
"research": {
|
||||
"Distributional semantics for understanding spoken meal descriptions": {
|
||||
"url": "https://www.semanticscholar.org/paper/Distributional-semantics-for-understanding-spoken-Korpusik-Huang/5f55c5535e80d3e5ed7f1f0b89531e32725faff5",
|
||||
"author": "Mandy Korpusik et al. (2016)"
|
||||
},
|
||||
|
||||
"Refactoring the Genia Event Extraction Shared Task Toward a General Framework for IE-Driven KB Development": {
|
||||
"url": "https://www.semanticscholar.org/paper/Refactoring-the-Genia-Event-Extraction-Shared-Task-Kim-Wang/06d94b64a7bd2d3433f57caddad5084435d6a91f",
|
||||
"author": "Jin-Dong Kim et al. (2016)"
|
||||
|
|
463
website/docs/usage/adding-languages.jade
Normal file
463
website/docs/usage/adding-languages.jade
Normal file
|
@ -0,0 +1,463 @@
|
|||
//- 💫 DOCS > USAGE > ADDING LANGUAGES
|
||||
|
||||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| Adding full support for a language touches many different parts of the
|
||||
| spaCy library. This guide explains how to fit everything together, and
|
||||
| points you to the specific workflows for each component. Obviously,
|
||||
| there are lots of ways you can organise your code when you implement
|
||||
| your own #[+api("language") #[code Language]] class. This guide will
|
||||
| focus on how it's done within spaCy. For full language support, we'll
|
||||
| need to:
|
||||
|
||||
+list("numbers")
|
||||
+item
|
||||
| Create a #[strong #[code Language] subclass] and
|
||||
| #[a(href="#language-subclass") implement it].
|
||||
|
||||
+item
|
||||
| Define custom #[strong language data], like a
|
||||
| #[a(href="#stop-words") stop list], #[a(href="#tag-map") tag map]
|
||||
| and #[a(href="#tokenizer-exceptions") tokenizer exceptions].
|
||||
|
||||
+item
|
||||
| #[strong Build the vocabulary] including
|
||||
| #[a(href="#word-probabilities") word probabilities],
|
||||
| #[a(href="#brown-clusters") Brown clusters] and
|
||||
| #[a(href="#word-vectors") word vectors].
|
||||
|
||||
p
|
||||
| Once you have the tokenizer and vocabulary, you can
|
||||
| #[+a("/docs/usage/training") train the tagger, parser and entity recognizer].
|
||||
| For some languages, you may also want to develop a solution for
|
||||
| lemmatization and morphological analysis.
|
||||
|
||||
+h(2, "language-subclass") Creating a #[code Language] subclass
|
||||
|
||||
p
|
||||
| Language-specific code and resources should be organised into a
|
||||
| subpackage of spaCy, named according to the language's
|
||||
| #[+a("https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes") ISO code].
|
||||
| For instance, code and resources specific to Spanish are placed into a
|
||||
| folder #[code spacy/es], which can be imported as #[code spacy.es].
|
||||
|
||||
p
|
||||
| To get started, you can use our
|
||||
| #[+src(gh("spacy-dev-resources", "templates/new_language")) templates]
|
||||
| for the most important files. Here's what the class template looks like:
|
||||
|
||||
+code("__init__.py (excerpt)").
|
||||
# Import language-specific data
|
||||
from .language_data import *
|
||||
|
||||
class Xxxxx(Language):
|
||||
lang = 'xx' # ISO code
|
||||
|
||||
class Defaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda text: 'xx'
|
||||
|
||||
# override defaults
|
||||
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
|
||||
tag_map = TAG_MAP
|
||||
stop_words = STOP_WORDS
|
||||
|
||||
p Additionally, the new #[code Language] class needs to be registered in #[+src(gh("spaCy", "spacy/__init__.py")) spacy/__init__.py] using the #[code set_lang_class()] function, so that you can use #[code spacy.load()].
|
||||
|
||||
+code("spacy/__init__.py").
|
||||
from . import en
|
||||
from . import xx
|
||||
|
||||
set_lang_class(en.English.lang, en.English)
|
||||
set_lang_class(xx.Xxxxx.lang, xx.Xxxxx)
|
||||
|
||||
p You'll also need to list the new package in #[+src(gh("spaCy", "spacy/setup.py")) setup.py]:
|
||||
|
||||
+code("spacy/setup.py").
|
||||
PACKAGES = [
|
||||
'spacy',
|
||||
'spacy.tokens',
|
||||
'spacy.en',
|
||||
'spacy.xx',
|
||||
# ...
|
||||
]
|
||||
|
||||
+h(2, "language-data") Adding language data
|
||||
|
||||
p
|
||||
| Every language is full of exceptions and special cases, especially
|
||||
| amongst the most common words. Some of these exceptions are shared
|
||||
| between multiple languages, while others are entirely idiosyncratic.
|
||||
| spaCy makes it easy to deal with these exceptions on a case-by-case
|
||||
| basis, by defining simple rules and exceptions. The exceptions data is
|
||||
| defined in Python the
|
||||
| #[+src(gh("spacy-dev-resources", "templates/new_language")) language data],
|
||||
| so that Python functions can be used to help you generalise and combine
|
||||
| the data as you require.
|
||||
|
||||
+h(3, "stop-words") Stop words
|
||||
|
||||
p
|
||||
| A #[+a("https://en.wikipedia.org/wiki/Stop_words") "stop list"] is a
|
||||
| classic trick from the early days of information retrieval when search
|
||||
| was largely about keyword presence and absence. It is still sometimes
|
||||
| useful today to filter out common words from a bag-of-words model.
|
||||
|
||||
+aside("What does spaCy consider a stop word?")
|
||||
| There's no particularly principal logic behind what words should be
|
||||
| added to the stop list. Make a list that you think might be useful
|
||||
| to people and is likely to be unsurprising. As a rule of thumb, words
|
||||
| that are very rare are unlikely to be useful stop words.
|
||||
|
||||
p
|
||||
| To improve readability, #[code STOP_WORDS] are separated by spaces and
|
||||
| newlines, and added as a multiline string:
|
||||
|
||||
+code("Example").
|
||||
STOP_WORDS = set("""
|
||||
a about above across after afterwards again against all almost alone along
|
||||
already also although always am among amongst amount an and another any anyhow
|
||||
anyone anything anyway anywhere are around as at
|
||||
|
||||
back be became because become becomes becoming been before beforehand behind
|
||||
being below beside besides between beyond both bottom but by
|
||||
""").split())
|
||||
|
||||
+h(3, "tag-map") Tag map
|
||||
|
||||
p
|
||||
| Most treebanks define a custom part-of-speech tag scheme, striking a
|
||||
| balance between level of detail and ease of prediction. While it's
|
||||
| useful to have custom tagging schemes, it's also useful to have a common
|
||||
| scheme, to which the more specific tags can be related. The tagger can
|
||||
| learn a tag scheme with any arbitrary symbols. However, you need to
|
||||
| define how those symbols map down to the
|
||||
| #[+a("http://universaldependencies.org/u/pos/all.html") Universal Dependencies tag set].
|
||||
| This is done by providing a tag map.
|
||||
|
||||
p
|
||||
| The keys of the tag map should be #[strong strings in your tag set]. The
|
||||
| values should be a dictionary. The dictionary must have an entry POS
|
||||
| whose value is one of the
|
||||
| #[+a("http://universaldependencies.org/u/pos/all.html") Universal Dependencies]
|
||||
| tags. Optionally, you can also include morphological features or other
|
||||
| token attributes in the tag map as well. This allows you to do simple
|
||||
| #[+a("/docs/usage/pos-tagging#rule-based-morphology") rule-based morphological analysis].
|
||||
|
||||
+code("Example").
|
||||
TAG_MAP = {
|
||||
"NNS": {POS: NOUN, "Number": "plur"},
|
||||
"VBG": {POS: VERB, "VerbForm": "part", "Tense": "pres", "Aspect": "prog"},
|
||||
"DT": {POS: DET}
|
||||
}
|
||||
|
||||
+h(3, "tokenizer-exceptions") Tokenizer exceptions
|
||||
|
||||
p
|
||||
| spaCy's #[+a("/docs/usage/customizing-tokenizer#how-tokenizer-works") tokenization algorithm]
|
||||
| lets you deal with whitespace-delimited chunks separately. This makes it
|
||||
| easy to define special-case rules, without worrying about how they
|
||||
| interact with the rest of the tokenizer. Whenever the key string is
|
||||
| matched, the special-case rule is applied, giving the defined sequence of
|
||||
| tokens. You can also attach attributes to the subtokens, covered by your
|
||||
| special case, such as the subtokens #[code LEMMA] or #[code TAG].
|
||||
|
||||
p
|
||||
| Tokenizer exceptions can be added in the following format:
|
||||
|
||||
+code("language_data.py").
|
||||
TOKENIZER_EXCEPTIONS = {
|
||||
"don't": [
|
||||
{ORTH: "do", LEMMA: "do"},
|
||||
{ORTH: "n't", LEMMA: "not", TAG: "RB"}
|
||||
]
|
||||
}
|
||||
|
||||
p
|
||||
| Some exceptions, like certain abbreviations, will always be mapped to a
|
||||
| single token containing only an #[code ORTH] property. To make your data
|
||||
| less verbose, you can use the helper function #[code strings_to_exc()]
|
||||
| with a simple array of strings:
|
||||
|
||||
+code("Example").
|
||||
from ..language_data import update_exc, strings_to_exc
|
||||
|
||||
ORTH_ONLY = ["a.", "b.", "c."]
|
||||
converted = strings_to_exc(ORTH_ONLY)
|
||||
# {"a.": [{ORTH: "a."}], "b.": [{ORTH: "b."}], "c.": [{ORTH: "c."}]}
|
||||
|
||||
update_exc(TOKENIZER_EXCEPTIONS, converted)
|
||||
|
||||
p
|
||||
| Unambiguous abbreviations, like month names or locations in English,
|
||||
| should be added to #[code TOKENIZER_EXCEPTIONS] with a lemma assigned,
|
||||
| for example #[code {ORTH: "Jan.", LEMMA: "January"}].
|
||||
|
||||
+h(3, "custom-tokenizer-exceptions") Custom tokenizer exceptions
|
||||
|
||||
p
|
||||
| For language-specific tokenizer exceptions, you can use the
|
||||
| #[code update_exc()] function to update the existing exceptions with a
|
||||
| custom dictionary. This is especially useful for exceptions that follow
|
||||
| a consistent pattern. Instead of adding each exception manually, you can
|
||||
| write a simple function that returns a dictionary of exceptions.
|
||||
|
||||
p
|
||||
| For example, here's how exceptions for time formats like "1a.m." and
|
||||
| "1am" are generated in the English
|
||||
| #[+src(gh("spaCy", "spacy/en/language_data.py")) language_data.py]:
|
||||
|
||||
+code("language_data.py").
|
||||
from ..language_data import update_exc
|
||||
|
||||
def get_time_exc(hours):
|
||||
exc = {}
|
||||
for hour in hours:
|
||||
exc["%da.m." % hour] = [{ORTH: hour}, {ORTH: "a.m."}]
|
||||
exc["%dp.m." % hour] = [{ORTH: hour}, {ORTH: "p.m."}]
|
||||
exc["%dam" % hour] = [{ORTH: hour}, {ORTH: "am", LEMMA: "a.m."}]
|
||||
exc["%dpm" % hour] = [{ORTH: hour}, {ORTH: "pm", LEMMA: "p.m."}]
|
||||
return exc
|
||||
|
||||
|
||||
TOKENIZER_EXCEPTIONS = dict(language_data.TOKENIZER_EXCEPTIONS)
|
||||
|
||||
hours = 12
|
||||
update_exc(TOKENIZER_EXCEPTIONS, get_time_exc(range(1, hours + 1)))
|
||||
|
||||
+h(3, "utils") Shared utils
|
||||
|
||||
p
|
||||
| The #[code spacy.language_data] package provides constants and functions
|
||||
| that can be imported and used across languages.
|
||||
|
||||
+aside("About spaCy's custom pronoun lemma")
|
||||
| Unlike verbs and common nouns, there's no clear base form of a personal
|
||||
| pronoun. Should the lemma of "me" be "I", or should we normalize person
|
||||
| as well, giving "it" — or maybe "he"? spaCy's solution is to introduce a
|
||||
| novel symbol, #[code.u-nowrap -PRON-], which is used as the lemma for
|
||||
| all personal pronouns.
|
||||
|
||||
+table(["Name", "Description"])
|
||||
+row
|
||||
+cell #[code PRON_LEMMA]
|
||||
+cell
|
||||
| Special value for pronoun lemmas (#[code "-PRON-"]).
|
||||
|
||||
+row
|
||||
+cell #[code ENT_ID]
|
||||
+cell
|
||||
| Special value for entity IDs (#[code "ent_id"])
|
||||
|
||||
+row
|
||||
+cell #[code update_exc(exc, additions)]
|
||||
+cell
|
||||
| Update an existing dictionary of exceptions #[code exc] with a
|
||||
| dictionary of #[code additions].
|
||||
|
||||
+row
|
||||
+cell #[code strings_to_exc(orths)]
|
||||
+cell
|
||||
| Convert an array of strings to a dictionary of exceptions of the
|
||||
| format #[code {"string": [{ORTH: "string"}]}].
|
||||
|
||||
+row
|
||||
+cell #[code expand_exc(excs, search, replace)]
|
||||
+cell
|
||||
| Search for a string #[code search] in a dictionary of exceptions
|
||||
| #[code excs] and if found, copy the entry and replace
|
||||
| #[code search] with #[code replace] in both the key and
|
||||
| #[code ORTH] value. Useful to provide exceptions containing
|
||||
| different versions of special unicode characters, like
|
||||
| #[code '] and #[code ’].
|
||||
|
||||
p
|
||||
| If you've written a custom function that seems like it might be useful
|
||||
| for several languages, consider adding it to
|
||||
| #[+src(gh("spaCy", "spacy/language_data/util.py")) language_data/util.py]
|
||||
| instead of the individual language module.
|
||||
|
||||
+h(3, "shared-data") Shared language data
|
||||
|
||||
p
|
||||
| Because languages can vary in quite arbitrary ways, spaCy avoids
|
||||
| organising the language data into an explicit inheritance hierarchy.
|
||||
| Instead, reuseable functions and data are collected as atomic pieces in
|
||||
| the #[code spacy.language_data] package.
|
||||
|
||||
+aside-code("Example").
|
||||
from ..language_data import update_exc, strings_to_exc
|
||||
from ..language_data import EMOTICONS
|
||||
|
||||
# Add custom emoticons
|
||||
EMOTICONS = EMOTICONS + ["8===D", ":~)"]
|
||||
|
||||
# Add emoticons to tokenizer exceptions
|
||||
update_exc(TOKENIZER_EXCEPTIONS, strings_to_exc(EMOTICONS))
|
||||
|
||||
+table(["Name", "Description", "Source"])
|
||||
+row
|
||||
+cell #[code EMOTICONS]
|
||||
|
||||
+cell
|
||||
| Common unicode emoticons without whitespace.
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/emoticons.py")) emoticons.py
|
||||
|
||||
+row
|
||||
+cell #[code TOKENIZER_PREFIXES]
|
||||
|
||||
+cell
|
||||
| Regular expressions to match left-attaching tokens and
|
||||
| punctuation, e.g. #[code $], #[code (], #[code "]
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/punctuation.py")) punctuation.py
|
||||
|
||||
+row
|
||||
+cell #[code TOKENIZER_SUFFIXES]
|
||||
|
||||
+cell
|
||||
| Regular expressions to match right-attaching tokens and
|
||||
| punctuation, e.g. #[code %], #[code )], #[code "]
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/punctuation.py")) punctuation.py
|
||||
|
||||
+row
|
||||
+cell #[code TOKENIZER_INFIXES]
|
||||
|
||||
+cell
|
||||
| Regular expressions to match token separators, e.g. #[code -]
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/punctuation.py")) punctuation.py
|
||||
|
||||
+row
|
||||
+cell #[code TAG_MAP]
|
||||
|
||||
+cell
|
||||
| A tag map keyed by the universal part-of-speech tags to
|
||||
| themselves with no morphological features.
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/tag_map.py")) tag_map.py
|
||||
|
||||
+row
|
||||
+cell #[code ENTITY_RULES]
|
||||
|
||||
+cell
|
||||
| Patterns for named entities commonly missed by the statistical
|
||||
| entity recognizer, for use in the rule matcher.
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/entity_rules.py")) entity_rules.py
|
||||
|
||||
+row
|
||||
+cell #[code FALSE_POSITIVES]
|
||||
|
||||
+cell
|
||||
| Patterns for phrases commonly mistaken for named entities by the
|
||||
| statistical entity recognizer, to use in the rule matcher.
|
||||
|
||||
+cell
|
||||
+src(gh("spaCy", "spacy/language_data/entity_rules.py")) entity_rules.py
|
||||
|
||||
p
|
||||
| Individual languages can extend and override any of these expressions.
|
||||
| Often, when a new language is added, you'll find a pattern or symbol
|
||||
| that's missing. Even if this pattern or symbol isn't common in other
|
||||
| languages, it might be best to add it to the base expressions, unless it
|
||||
| has some conflicting interpretation. For instance, we don't expect to
|
||||
| see guillemot quotation symbols (#[code »] and #[code «]) in
|
||||
| English text. But if we do see them, we'd probably prefer the tokenizer
|
||||
| to split it off.
|
||||
|
||||
+h(2, "vocabulary") Building the vocabulary
|
||||
|
||||
p
|
||||
| spaCy expects that common words will be cached in a
|
||||
| #[+api("vocab") #[code Vocab]] instance. The vocabulary caches lexical
|
||||
| features, and makes it easy to use information from unlabelled text
|
||||
| samples in your models. Specifically, you'll usually want to collect
|
||||
| word frequencies, and train two types of distributional similarity model:
|
||||
| Brown clusters, and word vectors. The Brown clusters are used as features
|
||||
| by linear models, while the word vectors are useful for lexical
|
||||
| similarity models and deep learning.
|
||||
|
||||
p
|
||||
| Once you've collected the word frequencies, Brown clusters and word
|
||||
| vectors files, you can use the
|
||||
| #[+src(gh("spacy-dev-resources", "training/init.py")) init.py]
|
||||
| script from our
|
||||
| #[+a(gh("spacy-developer-resources")) developer resources] to create a
|
||||
| spaCy data directory:
|
||||
|
||||
+code(false, "bash").
|
||||
python training/init.py xx your_data_directory/ my_data/word_freqs.txt my_data/clusters.txt my_data/word_vectors.bz2
|
||||
|
||||
+aside-code("your_data_directory", "yaml").
|
||||
├── vocab/
|
||||
| ├── lexemes.bin # via nlp.vocab.dump(path)
|
||||
| ├── strings.json # via nlp.vocab.strings.dump(file_)
|
||||
| └── oov_prob # optional
|
||||
├── pos/ # optional
|
||||
| ├── model # via nlp.tagger.model.dump(path)
|
||||
| └── config.json # via Langage.train
|
||||
├── deps/ # optional
|
||||
| ├── model # via nlp.parser.model.dump(path)
|
||||
| └── config.json # via Langage.train
|
||||
└── ner/ # optional
|
||||
├── model # via nlp.entity.model.dump(path)
|
||||
└── config.json # via Langage.train
|
||||
|
||||
p
|
||||
| This creates a spaCy data directory with a vocabulary model, ready to be
|
||||
| loaded. By default, the
|
||||
| #[+src(gh("spacy-dev-resources", "training/init.py")) init.py]
|
||||
| script expects to be able to find your language class using
|
||||
| #[code spacy.util.get_lang_class(lang_id)]. You can edit the script to
|
||||
| help it find your language class if necessary.
|
||||
|
||||
+h(3, "word-frequencies") Word frequencies
|
||||
|
||||
p
|
||||
| The #[code init.py] script expects a tab-separated word frequencies file
|
||||
| with three columns: the number of times the word occurred in your language
|
||||
| sample, the number of distinct documents the word occurred in, and the
|
||||
| word itself. You should make sure you use the spaCy tokenizer for your
|
||||
| language to segment the text for your word frequencies. This will ensure
|
||||
| that the frequencies refer to the same segmentation standards you'll be
|
||||
| using at run-time. For instance, spaCy's English tokenizer segments "can't"
|
||||
| into two tokens. If we segmented the text by whitespace to produce the
|
||||
| frequency counts, we'll have incorrect frequency counts for the tokens
|
||||
| "ca" and "n't".
|
||||
|
||||
+h(3, "brown-clusters") Training the Brown clusters
|
||||
|
||||
p
|
||||
| spaCy's tagger, parser and entity recognizer are designed to use
|
||||
| distributional similarity features provided by the
|
||||
| #[+a("https://github.com/percyliang/brown-cluster") Brown clustering algorithm].
|
||||
| You should train a model with between 500 and 1000 clusters. A minimum
|
||||
| frequency threshold of 10 usually works well.
|
||||
|
||||
+h(3, "word-vectors") Training the word vectors
|
||||
|
||||
p
|
||||
| #[+a("https://en.wikipedia.org/wiki/Word2vec") Word2vec] and related
|
||||
| algorithms let you train useful word similarity models from unlabelled
|
||||
| text. This is a key part of using
|
||||
| #[+a("/docs/usage/deep-learning") deep learning] for NLP with limited
|
||||
| labelled data. The vectors are also useful by themselves – they power
|
||||
| the #[code .similarity()] methods in spaCy. For best results, you should
|
||||
| pre-process the text with spaCy before training the Word2vec model. This
|
||||
| ensures your tokenization will match.
|
||||
|
||||
p
|
||||
| You can use our
|
||||
| #[+src(gh("spacy-dev-resources", "training/word_vectors.py")) word vectors training script],
|
||||
| which pre-processes the text with your language-specific tokenizer and
|
||||
| trains the model using #[+a("https://radimrehurek.com/gensim/") Gensim].
|
93
website/docs/usage/pos-tagging.jade
Normal file
93
website/docs/usage/pos-tagging.jade
Normal file
|
@ -0,0 +1,93 @@
|
|||
//- 💫 DOCS > USAGE > PART-OF-SPEECH TAGGING
|
||||
|
||||
include ../../_includes/_mixins
|
||||
|
||||
p
|
||||
| Part-of-speech tags are labels like noun, verb, adjective etc that are
|
||||
| assigned to each token in the document. They're useful in rule-based
|
||||
| processes. They can also be useful features in some statistical models.
|
||||
|
||||
p
|
||||
| To use spaCy's tagger, you need to have a data pack installed that
|
||||
| includes a tagging model. Tagging models are included in the data
|
||||
| downloads for English and German. After you load the model, the tagger
|
||||
| is applied automatically, as part of the default pipeline. You can then
|
||||
| access the tags using the #[+api("token") #[code Token.tag]] and
|
||||
| #[+api("token") #[code token.pos]] attributes. For English, the tagger
|
||||
| also triggers some simple rule-based morphological processing, which
|
||||
| gives you the lemma as well.
|
||||
|
||||
+code("Usage").
|
||||
import spacy
|
||||
nlp = spacy.load('en')
|
||||
doc = nlp(u'They told us to duck.')
|
||||
for word in doc:
|
||||
print(word.text, word.lemma, word.lemma_, word.tag, word.tag_, word.pos, word.pos_)
|
||||
|
||||
+h(2, "rule-based-morphology") Rule-based morphology
|
||||
|
||||
p
|
||||
| Inflectional morphology is the process by which a root form of a word is
|
||||
| modified by adding prefixes or suffixes that specify its grammatical
|
||||
| function but do not changes its part-of-speech. We say that a
|
||||
| #[strong lemma] (root form) is #[strong inflected] (modified/combined)
|
||||
| with one or more #[strong morphological features] to create a surface
|
||||
| form. Here are some examples:
|
||||
|
||||
+table(["Context", "Surface", "Lemma", "POS", "Morphological Features"])
|
||||
+row
|
||||
+cell I was reading the paper
|
||||
+cell reading
|
||||
+cell read
|
||||
+cell verb
|
||||
+cell #[code VerbForm=Ger]
|
||||
|
||||
+row
|
||||
+cell I don't watch the news, I read the paper.
|
||||
+cell read
|
||||
+cell read
|
||||
+cell verb
|
||||
+cell #[code VerbForm=Fin], #[code Mood=Ind], #[code Tense=Pres]
|
||||
|
||||
+row
|
||||
+cell I read the paper yesteday
|
||||
+cell read
|
||||
+cell read
|
||||
+cell verb
|
||||
+cell #[code VerbForm=Fin], #[code Mood=Ind], #[code Tense=Past]
|
||||
|
||||
p
|
||||
| English has a relatively simple morphological system, which spaCy
|
||||
| handles using rules that can be keyed by the token, the part-of-speech
|
||||
| tag, or the combination of the two. The system works as follows:
|
||||
|
||||
+list("numbers")
|
||||
+item
|
||||
| The tokenizer consults a #[strong mapping table]
|
||||
| #[code TOKENIZER_EXCEPTIONS], which allows sequences of characters
|
||||
| to be mapped to multiple tokens. Each token may be assigned a part
|
||||
| of speech and one or more morphological features.
|
||||
|
||||
+item
|
||||
| The part-of-speech tagger then assigns each token an
|
||||
| #[strong extended POS tag]. In the API, these tags are known as
|
||||
| #[code Token.tag]. They express the part-of-speech (e.g.
|
||||
| #[code VERB]) and some amount of morphological information, e.g.
|
||||
| that the verb is past tense.
|
||||
|
||||
+item
|
||||
| For words whose POS is not set by a prior process, a
|
||||
| #[strong mapping table] #[code TAG_MAP] maps the tags to a
|
||||
| part-of-speech and a set of morphological features.
|
||||
|
||||
+item
|
||||
| Finally, a #[strong rule-based deterministic lemmatizer] maps the
|
||||
| surface form, to a lemma in light of the previously assigned
|
||||
| extended part-of-speech and morphological information, without
|
||||
| consulting the context of the token. The lemmatizer also accepts
|
||||
| list-based exception files, acquired from
|
||||
| #[+a("https://wordnet.princeton.edu/") WordNet].
|
||||
|
||||
+h(2, "pos-schemes") Part-of-speech tag schemes
|
||||
|
||||
include ../api/_annotation/_pos-tags
|
Loading…
Reference in New Issue
Block a user