mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-04 20:30:24 +03:00
Add failing unit tests
This commit is contained in:
parent
ef9e504eac
commit
6c8358dcfc
|
@ -1,6 +1,8 @@
|
|||
import pytest
|
||||
import spacy
|
||||
|
||||
from thinc.api import Config
|
||||
|
||||
from typing import List
|
||||
from spacy.training import Example
|
||||
|
||||
|
@ -148,6 +150,157 @@ REHEARSE_DATA = [
|
|||
),
|
||||
]
|
||||
|
||||
TEXTCAT_MULTILABEL_LISTENER_CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","textcat_multilabel"]
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat_multilabel]
|
||||
factory = "textcat_multilabel"
|
||||
threshold = 0.5
|
||||
|
||||
[components.textcat_multilabel.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v2"
|
||||
nO = null
|
||||
|
||||
[components.textcat_multilabel.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
exclusive_classes = false
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
[components.textcat_multilabel.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = 64
|
||||
upstream = "*"
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = 64
|
||||
attrs = ["ORTH", "SHAPE"]
|
||||
rows = [5000, 2500]
|
||||
include_static_vectors = true
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MishWindowEncoder.v2"
|
||||
width = 64
|
||||
depth = 4
|
||||
window_size = 1
|
||||
"""
|
||||
|
||||
TEXTCAT_LISTENER_CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","textcat"]
|
||||
batch_size = 1000
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||
rows = [5000, 1000, 2500, 2500]
|
||||
include_static_vectors = true
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 256
|
||||
depth = 8
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v2"
|
||||
nO = null
|
||||
|
||||
[components.textcat.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
|
||||
[components.textcat.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
"""
|
||||
|
||||
TEXTCAT_CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
threshold = 0.5
|
||||
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v2"
|
||||
nO = null
|
||||
|
||||
[components.textcat.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
nO = null
|
||||
|
||||
[components.textcat.model.tok2vec]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[components.textcat.model.tok2vec.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = 64
|
||||
rows = [2000,2000,1000,1000,1000,1000]
|
||||
attrs = ["ORTH","LOWER","PREFIX","SUFFIX","SHAPE","ID"]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.textcat.model.tok2vec.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 64
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
depth = 2
|
||||
"""
|
||||
|
||||
TEXTCAT_EXAMPLE_TEXTS = [
|
||||
("This is a sentence for LABEL_A.", {"cats": {"LABEL_A": 1, "LABEL_B": 0}}),
|
||||
("A sentence for the label LABEL_B.", {"cats": {"LABEL_A": 0, "LABEL_B": 1}}),
|
||||
]
|
||||
|
||||
TEXTCAT_LABELS = ["LABEL_A", "LABEL_B"]
|
||||
|
||||
|
||||
def _add_ner_label(ner, data):
|
||||
for _, annotations in data:
|
||||
|
@ -209,3 +362,63 @@ def test_rehearse(component):
|
|||
nlp.add_pipe(component)
|
||||
nlp = _optimize(nlp, component, TRAIN_DATA, False)
|
||||
_optimize(nlp, component, REHEARSE_DATA, True)
|
||||
|
||||
|
||||
@pytest.mark.issue(12044)
|
||||
def test_rehearse_textcat_multilabel_listener():
|
||||
"""Test nlp.rehearse on a textcat_multilabel pipeline with a tok2vec listener"""
|
||||
config = Config().from_str(TEXTCAT_MULTILABEL_LISTENER_CONFIG)
|
||||
nlp = spacy.blank("en").from_config(config)
|
||||
textcat_multilabel = nlp.get_pipe("textcat_multilabel")
|
||||
for label in TEXTCAT_LABELS:
|
||||
textcat_multilabel.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
examples = []
|
||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
||||
examples.append(example)
|
||||
nlp.update([example])
|
||||
|
||||
optimizer = nlp.resume_training()
|
||||
nlp.rehearse(examples, sgd=optimizer)
|
||||
|
||||
|
||||
@pytest.mark.issue(12044)
|
||||
def test_rehearse_textcat_listener():
|
||||
"""Test nlp.rehearse on a textcat pipeline with a tok2vec listener"""
|
||||
config = Config().from_str(TEXTCAT_LISTENER_CONFIG)
|
||||
nlp = spacy.blank("en").from_config(config)
|
||||
textcat = nlp.get_pipe("textcat")
|
||||
for label in TEXTCAT_LABELS:
|
||||
textcat.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
examples = []
|
||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
||||
examples.append(example)
|
||||
nlp.update([example])
|
||||
|
||||
optimizer = nlp.resume_training()
|
||||
nlp.rehearse(examples, sgd=optimizer)
|
||||
|
||||
|
||||
@pytest.mark.issue(12044)
|
||||
def test_rehearse_textcat():
|
||||
"""Test nlp.rehearse on a textcat pipeline with an inline tok2vec component"""
|
||||
config = Config().from_str(TEXTCAT_CONFIG)
|
||||
nlp = spacy.blank("en").from_config(config)
|
||||
textcat = nlp.get_pipe("textcat")
|
||||
for label in TEXTCAT_LABELS:
|
||||
textcat.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
examples = []
|
||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
||||
examples.append(example)
|
||||
nlp.update([example])
|
||||
|
||||
optimizer = nlp.resume_training()
|
||||
nlp.rehearse(examples, sgd=optimizer)
|
||||
|
|
Loading…
Reference in New Issue
Block a user