Add option for GPU ID to pretrain

This commit is contained in:
Matthw Honnibal 2019-10-22 22:44:24 +02:00
parent 1dce86c555
commit 6c8785a238

View File

@ -10,10 +10,11 @@ from collections import Counter
from pathlib import Path
from thinc.v2v import Affine, Maxout
from thinc.misc import LayerNorm as LN
from thinc.neural.util import prefer_gpu
from thinc.neural.util import require_gpu
from wasabi import Printer
import srsly
from thinc.neural.util import to_categorical
from thinc.rates import cyclic_triangular_rate
from ..errors import Errors
from ..tokens import Doc
@ -80,6 +81,13 @@ from .train import _load_pretrained_tok2vec
"es",
int,
),
gpu_id=(
"Index of GPU to use, e.g. 0. -1 for CPU.",
"option",
"gpu",
int,
),
)
def pretrain(
texts_loc,
@ -104,6 +112,7 @@ def pretrain(
n_save_every=None,
init_tok2vec=None,
epoch_start=None,
gpu_id=-1,
):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
@ -126,10 +135,9 @@ def pretrain(
config[key] = str(config[key])
msg = Printer()
util.fix_random_seed(seed)
has_gpu = prefer_gpu(gpu_id=1)
msg.info("Using GPU" if has_gpu else "Not using GPU")
if gpu_id != -1:
has_gpu = require_gpu(gpu_id=gpu_id)
msg.info("Using GPU {}".format(gpu_id) if has_gpu else "Not using GPU")
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
@ -206,7 +214,8 @@ def pretrain(
def _save_model(epoch, is_temp=False):
is_temp_str = ".temp" if is_temp else ""
with model.use_params(optimizer.averages):
#with model.use_params(optimizer.averages):
if True:
with (output_dir / ("model%d%s.bin" % (epoch, is_temp_str))).open(
"wb"
) as file_:
@ -221,6 +230,10 @@ def pretrain(
file_.write(srsly.json_dumps(log) + "\n")
skip_counter = 0
min_lr = optimizer.alpha / 3
max_lr = optimizer.alpha * 2
period = 10000
learn_rates = cyclic_triangular_rate(min_lr, max_lr, period)
for epoch in range(epoch_start, n_iter + epoch_start):
for batch_id, batch in enumerate(
util.minibatch_by_words(((text, None) for text in texts), size=batch_size)
@ -232,6 +245,7 @@ def pretrain(
min_length=min_length,
)
skip_counter += count
optimizer.alpha = next(learn_rates)
loss = make_update(
model, docs, optimizer, objective=loss_func, drop=dropout
)