mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Improve score_cats for use with multiple textcat components (#11820)
* add test for running evaluate on an nlp pipeline with two distinct textcat components
* cleanup
* merge dicts instead of overwrite
* don't add more labels to the given set
* Revert "merge dicts instead of overwrite"
This reverts commit 89bee0ed77
.
* Switch tests to separate scorer keys rather than merged dicts
* Revert unrelated edits
* Switch textcat scorers to v2
* formatting
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
f1dcdefc8a
commit
6d03b04901
|
@ -74,7 +74,7 @@ subword_features = true
|
|||
default_config={
|
||||
"threshold": 0.5,
|
||||
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"},
|
||||
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
||||
},
|
||||
default_score_weights={
|
||||
"cats_score": 1.0,
|
||||
|
@ -120,7 +120,7 @@ def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str,
|
|||
)
|
||||
|
||||
|
||||
@registry.scorers("spacy.textcat_multilabel_scorer.v1")
|
||||
@registry.scorers("spacy.textcat_multilabel_scorer.v2")
|
||||
def make_textcat_multilabel_scorer():
|
||||
return textcat_multilabel_score
|
||||
|
||||
|
|
|
@ -476,14 +476,12 @@ class Scorer:
|
|||
f_per_type = {label: PRFScore() for label in labels}
|
||||
auc_per_type = {label: ROCAUCScore() for label in labels}
|
||||
labels = set(labels)
|
||||
if labels:
|
||||
for eg in examples:
|
||||
labels.update(eg.predicted.cats.keys())
|
||||
labels.update(eg.reference.cats.keys())
|
||||
for example in examples:
|
||||
# Through this loop, None in the gold_cats indicates missing label.
|
||||
pred_cats = getter(example.predicted, attr)
|
||||
pred_cats = {k: v for k, v in pred_cats.items() if k in labels}
|
||||
gold_cats = getter(example.reference, attr)
|
||||
gold_cats = {k: v for k, v in gold_cats.items() if k in labels}
|
||||
|
||||
for label in labels:
|
||||
pred_score = pred_cats.get(label, 0.0)
|
||||
|
|
|
@ -898,7 +898,11 @@ def test_textcat_multi_threshold():
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"component_name,scorer", [("textcat", "spacy.textcat_scorer.v1")]
|
||||
"component_name,scorer",
|
||||
[
|
||||
("textcat", "spacy.textcat_scorer.v1"),
|
||||
("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"),
|
||||
],
|
||||
)
|
||||
def test_textcat_legacy_scorers(component_name, scorer):
|
||||
"""Check that legacy scorers are registered and produce the expected score
|
||||
|
|
|
@ -3,6 +3,7 @@ import logging
|
|||
from unittest import mock
|
||||
import pytest
|
||||
from spacy.language import Language
|
||||
from spacy.scorer import Scorer
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.training import Example
|
||||
|
@ -126,6 +127,112 @@ def test_evaluate_no_pipe(nlp):
|
|||
nlp.evaluate([Example.from_dict(doc, annots)])
|
||||
|
||||
|
||||
def test_evaluate_textcat_multilabel(en_vocab):
|
||||
"""Test that evaluate works with a multilabel textcat pipe."""
|
||||
nlp = Language(en_vocab)
|
||||
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
||||
for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
|
||||
textcat_multilabel.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
annots = {"cats": {"FEATURE": 1.0, "QUESTION": 1.0}}
|
||||
doc = nlp.make_doc("hello world")
|
||||
example = Example.from_dict(doc, annots)
|
||||
scores = nlp.evaluate([example])
|
||||
labels = nlp.get_pipe("textcat_multilabel").labels
|
||||
for label in labels:
|
||||
assert scores["cats_f_per_type"].get(label) is not None
|
||||
for key in example.reference.cats.keys():
|
||||
if key not in labels:
|
||||
assert scores["cats_f_per_type"].get(key) is None
|
||||
|
||||
|
||||
def test_evaluate_multiple_textcat_final(en_vocab):
|
||||
"""Test that evaluate evaluates the final textcat component in a pipeline
|
||||
with more than one textcat or textcat_multilabel."""
|
||||
nlp = Language(en_vocab)
|
||||
textcat = nlp.add_pipe("textcat")
|
||||
for label in ("POSITIVE", "NEGATIVE"):
|
||||
textcat.add_label(label)
|
||||
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
||||
for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
|
||||
textcat_multilabel.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
annots = {
|
||||
"cats": {
|
||||
"POSITIVE": 1.0,
|
||||
"NEGATIVE": 0.0,
|
||||
"FEATURE": 1.0,
|
||||
"QUESTION": 1.0,
|
||||
"POSITIVE": 1.0,
|
||||
"NEGATIVE": 0.0,
|
||||
}
|
||||
}
|
||||
doc = nlp.make_doc("hello world")
|
||||
example = Example.from_dict(doc, annots)
|
||||
scores = nlp.evaluate([example])
|
||||
# get the labels from the final pipe
|
||||
labels = nlp.get_pipe(nlp.pipe_names[-1]).labels
|
||||
for label in labels:
|
||||
assert scores["cats_f_per_type"].get(label) is not None
|
||||
for key in example.reference.cats.keys():
|
||||
if key not in labels:
|
||||
assert scores["cats_f_per_type"].get(key) is None
|
||||
|
||||
|
||||
def test_evaluate_multiple_textcat_separate(en_vocab):
|
||||
"""Test that evaluate can evaluate multiple textcat components separately
|
||||
with custom scorers."""
|
||||
|
||||
def custom_textcat_score(examples, **kwargs):
|
||||
scores = Scorer.score_cats(
|
||||
examples,
|
||||
"cats",
|
||||
multi_label=False,
|
||||
**kwargs,
|
||||
)
|
||||
return {f"custom_{k}": v for k, v in scores.items()}
|
||||
|
||||
@spacy.registry.scorers("test_custom_textcat_scorer")
|
||||
def make_custom_textcat_scorer():
|
||||
return custom_textcat_score
|
||||
|
||||
nlp = Language(en_vocab)
|
||||
textcat = nlp.add_pipe(
|
||||
"textcat",
|
||||
config={"scorer": {"@scorers": "test_custom_textcat_scorer"}},
|
||||
)
|
||||
for label in ("POSITIVE", "NEGATIVE"):
|
||||
textcat.add_label(label)
|
||||
textcat_multilabel = nlp.add_pipe("textcat_multilabel")
|
||||
for label in ("FEATURE", "REQUEST", "BUG", "QUESTION"):
|
||||
textcat_multilabel.add_label(label)
|
||||
nlp.initialize()
|
||||
|
||||
annots = {
|
||||
"cats": {
|
||||
"POSITIVE": 1.0,
|
||||
"NEGATIVE": 0.0,
|
||||
"FEATURE": 1.0,
|
||||
"QUESTION": 1.0,
|
||||
"POSITIVE": 1.0,
|
||||
"NEGATIVE": 0.0,
|
||||
}
|
||||
}
|
||||
doc = nlp.make_doc("hello world")
|
||||
example = Example.from_dict(doc, annots)
|
||||
scores = nlp.evaluate([example])
|
||||
# check custom scores for the textcat pipe
|
||||
assert "custom_cats_f_per_type" in scores
|
||||
labels = nlp.get_pipe("textcat").labels
|
||||
assert set(scores["custom_cats_f_per_type"].keys()) == set(labels)
|
||||
# check default scores for the textcat_multilabel pipe
|
||||
assert "cats_f_per_type" in scores
|
||||
labels = nlp.get_pipe("textcat_multilabel").labels
|
||||
assert set(scores["cats_f_per_type"].keys()) == set(labels)
|
||||
|
||||
|
||||
def vector_modification_pipe(doc):
|
||||
doc.vector += 1
|
||||
return doc
|
||||
|
|
Loading…
Reference in New Issue
Block a user