mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Break the tokenization stage out of the pipeline into a function 'make_doc'. This allows all pipeline methods to have the same signature.
This commit is contained in:
parent
2cc515b2ed
commit
6d8cb515ac
|
@ -35,7 +35,6 @@ from .syntax.parser import get_templates
|
||||||
from .syntax.nonproj import PseudoProjectivity
|
from .syntax.nonproj import PseudoProjectivity
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class BaseDefaults(object):
|
class BaseDefaults(object):
|
||||||
def __init__(self, lang, path):
|
def __init__(self, lang, path):
|
||||||
self.path = path
|
self.path = path
|
||||||
|
@ -125,8 +124,11 @@ class BaseDefaults(object):
|
||||||
else:
|
else:
|
||||||
return Matcher(vocab)
|
return Matcher(vocab)
|
||||||
|
|
||||||
|
def MakeDoc(self, nlp, **cfg):
|
||||||
|
return nlp.tokenizer.__call__
|
||||||
|
|
||||||
def Pipeline(self, nlp, **cfg):
|
def Pipeline(self, nlp, **cfg):
|
||||||
pipeline = [nlp.tokenizer]
|
pipeline = []
|
||||||
if nlp.tagger:
|
if nlp.tagger:
|
||||||
pipeline.append(nlp.tagger)
|
pipeline.append(nlp.tagger)
|
||||||
if nlp.parser:
|
if nlp.parser:
|
||||||
|
@ -265,6 +267,7 @@ class Language(object):
|
||||||
matcher=True,
|
matcher=True,
|
||||||
serializer=True,
|
serializer=True,
|
||||||
vectors=True,
|
vectors=True,
|
||||||
|
make_doc=True,
|
||||||
pipeline=True,
|
pipeline=True,
|
||||||
defaults=True,
|
defaults=True,
|
||||||
data_dir=None):
|
data_dir=None):
|
||||||
|
@ -303,6 +306,11 @@ class Language(object):
|
||||||
self.entity = entity if entity is not True else defaults.Entity(self.vocab)
|
self.entity = entity if entity is not True else defaults.Entity(self.vocab)
|
||||||
self.parser = parser if parser is not True else defaults.Parser(self.vocab)
|
self.parser = parser if parser is not True else defaults.Parser(self.vocab)
|
||||||
self.matcher = matcher if matcher is not True else defaults.Matcher(self.vocab)
|
self.matcher = matcher if matcher is not True else defaults.Matcher(self.vocab)
|
||||||
|
|
||||||
|
if make_doc in (None, True, False):
|
||||||
|
self.make_doc = defaults.MakeDoc(self)
|
||||||
|
else:
|
||||||
|
self.make_doc = make_doc
|
||||||
if pipeline in (None, False):
|
if pipeline in (None, False):
|
||||||
self.pipeline = []
|
self.pipeline = []
|
||||||
elif pipeline is True:
|
elif pipeline is True:
|
||||||
|
@ -339,24 +347,22 @@ class Language(object):
|
||||||
>>> tokens[0].orth_, tokens[0].head.tag_
|
>>> tokens[0].orth_, tokens[0].head.tag_
|
||||||
('An', 'NN')
|
('An', 'NN')
|
||||||
"""
|
"""
|
||||||
doc = self.pipeline[0](text)
|
doc = self.make_doc(text)
|
||||||
if self.entity and entity:
|
if self.entity and entity:
|
||||||
# Add any of the entity labels already set, in case we don't have them.
|
# Add any of the entity labels already set, in case we don't have them.
|
||||||
for token in doc:
|
for token in doc:
|
||||||
if token.ent_type != 0:
|
if token.ent_type != 0:
|
||||||
self.entity.add_label(token.ent_type)
|
self.entity.add_label(token.ent_type)
|
||||||
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
||||||
for proc in self.pipeline[1:]:
|
for proc in self.pipeline:
|
||||||
if proc and not skip.get(proc):
|
if proc and not skip.get(proc):
|
||||||
proc(doc)
|
proc(doc)
|
||||||
return doc
|
return doc
|
||||||
|
|
||||||
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2,
|
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000):
|
||||||
batch_size=1000):
|
|
||||||
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
||||||
stream = self.pipeline[0].pipe(texts,
|
stream = (self.make_doc(text) for text in texts)
|
||||||
n_threads=n_threads, batch_size=batch_size)
|
for proc in self.pipeline:
|
||||||
for proc in self.pipeline[1:]:
|
|
||||||
if proc and not skip.get(proc):
|
if proc and not skip.get(proc):
|
||||||
if hasattr(proc, 'pipe'):
|
if hasattr(proc, 'pipe'):
|
||||||
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
|
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user