mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Merge pull request #6180 from adrianeboyd/docs/minor-v3-2 [ci skip]
This commit is contained in:
commit
6d8df081bd
|
@ -84,7 +84,7 @@ cuda102 =
|
|||
cupy-cuda102>=5.0.0b4,<9.0.0
|
||||
# Language tokenizers with external dependencies
|
||||
ja =
|
||||
sudachipy>=0.4.5
|
||||
sudachipy>=0.4.9
|
||||
sudachidict_core>=20200330
|
||||
ko =
|
||||
natto-py==0.9.0
|
||||
|
|
|
@ -85,7 +85,8 @@ import the `MultiLanguage` class directly, or call
|
|||
|
||||
### Chinese language support {#chinese new=2.3}
|
||||
|
||||
The Chinese language class supports three word segmentation options:
|
||||
The Chinese language class supports three word segmentation options, `char`,
|
||||
`jieba` and `pkuseg`:
|
||||
|
||||
> ```python
|
||||
> from spacy.lang.zh import Chinese
|
||||
|
@ -95,11 +96,12 @@ The Chinese language class supports three word segmentation options:
|
|||
>
|
||||
> # Jieba
|
||||
> cfg = {"segmenter": "jieba"}
|
||||
> nlp = Chinese(meta={"tokenizer": {"config": cfg}})
|
||||
> nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
|
||||
>
|
||||
> # PKUSeg with "default" model provided by pkuseg
|
||||
> cfg = {"segmenter": "pkuseg", "pkuseg_model": "default"}
|
||||
> nlp = Chinese(meta={"tokenizer": {"config": cfg}})
|
||||
> cfg = {"segmenter": "pkuseg"}
|
||||
> nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
|
||||
> nlp.tokenizer.initialize(pkuseg_model="default")
|
||||
> ```
|
||||
|
||||
1. **Character segmentation:** Character segmentation is the default
|
||||
|
@ -116,41 +118,34 @@ The Chinese language class supports three word segmentation options:
|
|||
<Infobox variant="warning">
|
||||
|
||||
In spaCy v3.0, the default Chinese word segmenter has switched from Jieba to
|
||||
character segmentation. Also note that
|
||||
[`pkuseg`](https://github.com/lancopku/pkuseg-python) doesn't yet ship with
|
||||
pre-compiled wheels for Python 3.8. If you're running Python 3.8, you can
|
||||
install it from our fork and compile it locally:
|
||||
|
||||
```bash
|
||||
$ pip install https://github.com/honnibal/pkuseg-python/archive/master.zip
|
||||
```
|
||||
character segmentation.
|
||||
|
||||
</Infobox>
|
||||
|
||||
<Accordion title="Details on spaCy's Chinese API">
|
||||
|
||||
The `meta` argument of the `Chinese` language class supports the following
|
||||
following tokenizer config settings:
|
||||
The `initialize` method for the Chinese tokenizer class supports the following
|
||||
config settings for loading pkuseg models:
|
||||
|
||||
| Name | Description |
|
||||
| ------------------ | --------------------------------------------------------------------------------------------------------------- |
|
||||
| `segmenter` | Word segmenter: `char`, `jieba` or `pkuseg`. Defaults to `char`. ~~str~~ |
|
||||
| `pkuseg_model` | **Required for `pkuseg`:** Name of a model provided by `pkuseg` or the path to a local model directory. ~~str~~ |
|
||||
| `pkuseg_user_dict` | Optional path to a file with one word per line which overrides the default `pkuseg` user dictionary. ~~str~~ |
|
||||
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `pkuseg_model` | Name of a model provided by `pkuseg` or the path to a local model directory. ~~str~~ |
|
||||
| `pkuseg_user_dict` | Optional path to a file with one word per line which overrides the default `pkuseg` user dictionary. Defaults to `"default"`. ~~str~~ |
|
||||
|
||||
```python
|
||||
### Examples
|
||||
# Initialize the pkuseg tokenizer
|
||||
cfg = {"segmenter": "pkuseg"}
|
||||
nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
|
||||
|
||||
# Load "default" model
|
||||
cfg = {"segmenter": "pkuseg", "pkuseg_model": "default"}
|
||||
nlp = Chinese(config={"tokenizer": {"config": cfg}})
|
||||
nlp.tokenizer.initialize(pkuseg_model="default")
|
||||
|
||||
# Load local model
|
||||
cfg = {"segmenter": "pkuseg", "pkuseg_model": "/path/to/pkuseg_model"}
|
||||
nlp = Chinese(config={"tokenizer": {"config": cfg}})
|
||||
nlp.tokenizer.initialize(pkuseg_model="/path/to/pkuseg_model")
|
||||
|
||||
# Override the user directory
|
||||
cfg = {"segmenter": "pkuseg", "pkuseg_model": "default", "pkuseg_user_dict": "/path"}
|
||||
nlp = Chinese(config={"tokenizer": {"config": cfg}})
|
||||
nlp.tokenizer.initialize(pkuseg_model="default", pkuseg_user_dict="/path/to/user_dict")
|
||||
```
|
||||
|
||||
You can also modify the user dictionary on-the-fly:
|
||||
|
@ -185,8 +180,11 @@ from spacy.lang.zh import Chinese
|
|||
|
||||
# Train pkuseg model
|
||||
pkuseg.train("train.utf8", "test.utf8", "/path/to/pkuseg_model")
|
||||
|
||||
# Load pkuseg model in spaCy Chinese tokenizer
|
||||
nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_model", "require_pkuseg": True}}})
|
||||
cfg = {"segmenter": "pkuseg"}
|
||||
nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
|
||||
nlp.tokenizer.initialize(pkuseg_model="/path/to/pkuseg_model")
|
||||
```
|
||||
|
||||
</Accordion>
|
||||
|
@ -201,20 +199,19 @@ nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_mo
|
|||
>
|
||||
> # Load SudachiPy with split mode B
|
||||
> cfg = {"split_mode": "B"}
|
||||
> nlp = Japanese(meta={"tokenizer": {"config": cfg}})
|
||||
> nlp = Japanese.from_config({"nlp": {"tokenizer": cfg}})
|
||||
> ```
|
||||
|
||||
The Japanese language class uses
|
||||
[SudachiPy](https://github.com/WorksApplications/SudachiPy) for word
|
||||
segmentation and part-of-speech tagging. The default Japanese language class and
|
||||
the provided Japanese pipelines use SudachiPy split mode `A`. The `meta`
|
||||
argument of the `Japanese` language class can be used to configure the split
|
||||
mode to `A`, `B` or `C`.
|
||||
the provided Japanese pipelines use SudachiPy split mode `A`. The tokenizer
|
||||
config can be used to configure the split mode to `A`, `B` or `C`.
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
If you run into errors related to `sudachipy`, which is currently under active
|
||||
development, we suggest downgrading to `sudachipy==0.4.5`, which is the version
|
||||
development, we suggest downgrading to `sudachipy==0.4.9`, which is the version
|
||||
used for training the current [Japanese pipelines](/models/ja).
|
||||
|
||||
</Infobox>
|
||||
|
|
|
@ -1124,17 +1124,6 @@ a dictionary with keyword arguments specifying the annotations, like `tags` or
|
|||
annotations, the model can be updated to learn a sentence of three words with
|
||||
their assigned part-of-speech tags.
|
||||
|
||||
> #### About the tag map
|
||||
>
|
||||
> The tag map is part of the vocabulary and defines the annotation scheme. If
|
||||
> you're training a new pipeline, this will let you map the tags present in the
|
||||
> treebank you train on to spaCy's tag scheme:
|
||||
>
|
||||
> ```python
|
||||
> tag_map = {"N": {"pos": "NOUN"}, "V": {"pos": "VERB"}}
|
||||
> vocab = Vocab(tag_map=tag_map)
|
||||
> ```
|
||||
|
||||
```python
|
||||
words = ["I", "like", "stuff"]
|
||||
tags = ["NOUN", "VERB", "NOUN"]
|
||||
|
|
Loading…
Reference in New Issue
Block a user