Work on serialization for models

This commit is contained in:
Matthew Honnibal 2017-05-29 01:37:57 +02:00
parent b007b0e5a0
commit 6dad4117ad
5 changed files with 113 additions and 10 deletions

View File

@ -1,3 +1,4 @@
import ujson
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
@ -15,7 +16,45 @@ from thinc.neural._classes.affine import _set_dimensions_if_needed
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
from .tokens.doc import Doc
import dill
import numpy
import io
def model_to_bytes(model):
weights = []
metas = []
queue = [model]
i = 0
for layer in queue:
if hasattr(layer, '_mem'):
weights.append(layer._mem.weights)
metas.append(layer._mem._offsets)
i += 1
if hasattr(layer, '_layers'):
queue.extend(layer._layers)
data = {'metas': metas, 'weights': weights}
# TODO: Replace the pickle here with something else
return dill.dumps(data)
def model_from_bytes(model, bytes_data):
# TODO: Replace the pickle here with something else
data = dill.loads(bytes_data)
metas = data['metas']
weights = data['weights']
queue = [model]
i = 0
for layer in queue:
if hasattr(layer, '_mem'):
params = weights[i]
flat_mem = layer._mem._mem.ravel()
flat_params = params.ravel()
flat_mem[:flat_params.size] = flat_params
layer._mem._offsets.update(metas[i])
i += 1
if hasattr(layer, '_layers'):
queue.extend(layer._layers)
def _init_for_precomputed(W, ops):

View File

@ -9,6 +9,7 @@ import numpy
cimport numpy as np
import cytoolz
import util
import ujson
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
from thinc.neural import Model, Maxout, Softmax, Affine
@ -35,6 +36,7 @@ from .syntax import nonproj
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP, POS
from ._ml import rebatch, Tok2Vec, flatten, get_col, doc2feats
from ._ml import model_to_bytes, model_from_bytes
from .parts_of_speech import X
@ -148,7 +150,6 @@ class TokenVectorEncoder(object):
if self.model is True:
self.model = self.Model()
def use_params(self, params):
"""Replace weights of models in the pipeline with those provided in the
params dictionary.
@ -158,6 +159,39 @@ class TokenVectorEncoder(object):
with self.model.use_params(params):
yield
def to_bytes(self, **exclude):
data = {
'model': self.model,
'vocab': self.vocab
}
return util.to_bytes(data, exclude)
def from_bytes(self, bytes_data, **exclude):
data = ujson.loads(bytes_data)
if 'model' not in exclude:
util.model_from_bytes(self.model, data['model'])
if 'vocab' not in exclude:
self.vocab.from_bytes(data['vocab'])
return self
def to_disk(self, path, **exclude):
path = util.ensure_path(path)
if not path.exists():
path.mkdir()
if 'vocab' not in exclude:
self.vocab.to_disk(path / 'vocab')
if 'model' not in exclude:
with (path / 'model.bin').open('wb') as file_:
file_.write(util.model_to_bytes(self.model))
def from_disk(self, path, **exclude):
path = util.ensure_path(path)
if 'vocab' not in exclude:
self.vocab.from_disk(path / 'vocab')
if 'model.bin' not in exclude:
with (path / 'model.bin').open('rb') as file_:
util.model_from_bytes(self.model, file_.read())
class NeuralTagger(object):
name = 'nn_tagger'

View File

@ -2,12 +2,38 @@
from __future__ import unicode_literals
from ..util import ensure_path
from .._ml import model_to_bytes, model_from_bytes
from pathlib import Path
import pytest
from thinc.neural import Maxout, Softmax
from thinc.api import chain
@pytest.mark.parametrize('text', ['hello/world', 'hello world'])
def test_util_ensure_path_succeeds(text):
path = ensure_path(text)
assert isinstance(path, Path)
def test_simple_model_roundtrip_bytes():
model = Maxout(5, 10, pieces=2)
model.b += 1
data = model_to_bytes(model)
model.b -= 1
model_from_bytes(model, data)
assert model.b[0, 0] == 1
def test_multi_model_roundtrip_bytes():
model = chain(Maxout(5, 10, pieces=2), Maxout(2, 3))
model._layers[0].b += 1
model._layers[1].b += 2
data = model_to_bytes(model)
model._layers[0].b -= 1
model._layers[1].b -= 2
model_from_bytes(model, data)
assert model._layers[0].b[0, 0] == 1
assert model._layers[1].b[0, 0] == 2

View File

@ -408,6 +408,18 @@ def get_raw_input(description, default=False):
return user_input
def to_bytes(unserialized, exclude):
serialized = {}
for key, value in unserialized.items():
if key in exclude:
continue
elif hasattr(value, 'to_bytes'):
serialized[key] = value.to_bytes()
else:
serialized[key] = ujson.dumps(value)
return ujson.dumps(serialized)
def print_table(data, title=None):
"""Print data in table format.

View File

@ -56,15 +56,7 @@ cdef class Vocab:
if strings:
for string in strings:
self.strings.add(string)
# Load strings in a special order, so that we have an onset number for
# the vocabulary. This way, when words are added in order, the orth ID
# is the frequency rank of the word, plus a certain offset. The structural
# strings are loaded first, because the vocab is open-class, and these
# symbols are closed class.
# TODO: Actually this has turned out to be a pain in the ass...
# It means the data is invalidated when we add a symbol :(
# Need to rethink this.
for name in symbols.NAMES + list(sorted(tag_map.keys())):
for name in tag_map.keys():
if name:
self.strings.add(name)
self.lex_attr_getters = lex_attr_getters