diff --git a/spacy/cli/train.py b/spacy/cli/train.py index 99d05747d..2945794e7 100644 --- a/spacy/cli/train.py +++ b/spacy/cli/train.py @@ -53,17 +53,18 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, if no_entities and 'entities' in pipeline: pipeline.remove('entities') nlp = lang_class(pipeline=pipeline) - corpus = GoldCorpus(train_path, dev_path) + corpus = GoldCorpus(train_path, dev_path, limit=n_sents) dropout = util.env_opt('dropout', 0.0) dropout_decay = util.env_opt('dropout_decay', 0.0) + orig_dropout = dropout optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu) n_train_docs = corpus.count_train() batch_size = float(util.env_opt('min_batch_size', 4)) max_batch_size = util.env_opt('max_batch_size', 64) batch_accel = util.env_opt('batch_accel', 1.001) - print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %") + print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %") for i in range(n_iter): with tqdm.tqdm(total=n_train_docs) as pbar: train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True) @@ -77,8 +78,8 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0, pbar.update(len(docs)) idx += len(docs) batch_size *= batch_accel - batch_size = min(int(batch_size), max_batch_size) - dropout = linear_decay(dropout, dropout_decay, i*n_train_docs+idx) + batch_size = min(batch_size, max_batch_size) + dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx) with nlp.use_params(optimizer.averages): scorer = nlp.evaluate(corpus.dev_docs(nlp)) print_progress(i, {}, scorer.scores) @@ -97,38 +98,24 @@ def _render_parses(i, to_render): file_.write(html) -def evaluate(Language, gold_tuples, path): - with (path / 'model.bin').open('rb') as file_: - nlp = dill.load(file_) - # TODO: - # 1. This code is duplicate with spacy.train.Trainer.evaluate - # 2. There's currently a semantic difference between pipe and - # not pipe! It matters whether we batch the inputs. Must fix! - all_docs = [] - all_golds = [] - for raw_text, paragraph_tuples in dev_sents: - if gold_preproc: - raw_text = None - else: - paragraph_tuples = merge_sents(paragraph_tuples) - docs = self.make_docs(raw_text, paragraph_tuples) - golds = self.make_golds(docs, paragraph_tuples) - all_docs.extend(docs) - all_golds.extend(golds) - scorer = Scorer() - for doc, gold in zip(self.nlp.pipe(all_docs), all_golds): - scorer.score(doc, gold) - return scorer - - def print_progress(itn, losses, dev_scores): # TODO: Fix! scores = {} - for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']: + for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', + 'ents_p', 'ents_r', 'ents_f']: scores[col] = 0.0 scores.update(losses) scores.update(dev_scores) - tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' + tpl = '\t'.join(( + '{:d}', + '{dep_loss:.3f}', + '{tag_loss:.3f}', + '{uas:.3f}', + '{ents_p:.3f}', + '{ents_r:.3f}', + '{ents_f:.3f}', + '{tags_acc:.3f}', + '{token_acc:.3f}')) print(tpl.format(itn, **scores))