mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-10 08:12:24 +03:00
add spans.attrs[scores]
This commit is contained in:
parent
afc3ce1c7e
commit
6fc25f64dd
|
@ -690,13 +690,11 @@ class SpanCategorizer(TrainablePipe):
|
|||
span_filter = ranked[:, max_positive:]
|
||||
for i, row in enumerate(span_filter):
|
||||
keeps[i, row] = False
|
||||
# TODO I think this is now incorrect
|
||||
spans.attrs["scores"] = scores[keeps].flatten()
|
||||
|
||||
attrs_scores = []
|
||||
for i in range(indices.shape[0]):
|
||||
start = indices[i, 0]
|
||||
end = indices[i, 1]
|
||||
|
||||
for j, keep in enumerate(keeps[i]):
|
||||
if keep:
|
||||
# If the predicted label is the negative label skip it.
|
||||
|
@ -704,7 +702,8 @@ class SpanCategorizer(TrainablePipe):
|
|||
continue
|
||||
else:
|
||||
spans.append(Span(doc, start, end, label=labels[j]))
|
||||
|
||||
attrs_scores.append(scores[i, j])
|
||||
spans.attrs["scores"] = numpy.array(attrs_scores)
|
||||
return spans
|
||||
|
||||
def _make_span_group_singlelabel(
|
||||
|
@ -721,21 +720,19 @@ class SpanCategorizer(TrainablePipe):
|
|||
return spans
|
||||
scores = self.model.ops.to_numpy(scores)
|
||||
indices = self.model.ops.to_numpy(indices)
|
||||
threshold = self.cfg["threshold"]
|
||||
predicted = scores.argmax(axis=1)
|
||||
argmax_scores = numpy.take_along_axis(
|
||||
scores, numpy.expand_dims(predicted, 1), axis=1
|
||||
).squeeze()
|
||||
)
|
||||
keeps = numpy.ones(predicted.shape, dtype=bool)
|
||||
# Remove samples where the negative label is the argmax.
|
||||
if self.add_negative_label:
|
||||
positive = numpy.where(predicted != self._negative_label)[0]
|
||||
predicted = predicted[positive]
|
||||
indices = indices[positive]
|
||||
keeps = numpy.logical_and(keeps, predicted != self._negative_label)
|
||||
# Filter samples according to threshold.
|
||||
threshold = self.cfg["threshold"]
|
||||
if threshold is not None:
|
||||
keeps = numpy.where(argmax_scores >= threshold)
|
||||
predicted = predicted[keeps]
|
||||
indices = indices[keeps]
|
||||
print(argmax_scores >= threshold)
|
||||
keeps = numpy.logical_and(keeps, argmax_scores >= threshold)
|
||||
# Sort spans according to argmax probability
|
||||
if not allow_overlap:
|
||||
# Get the probabilities
|
||||
|
@ -746,7 +743,10 @@ class SpanCategorizer(TrainablePipe):
|
|||
# TODO assigns spans.attrs["scores"]
|
||||
seen = Intervals()
|
||||
spans = SpanGroup(doc, name=self.key)
|
||||
for i in range(len(predicted)):
|
||||
attrs_scores = []
|
||||
for i in range(indices.shape[0]):
|
||||
if not keeps[i]:
|
||||
continue
|
||||
label = predicted[i]
|
||||
start = indices[i, 0]
|
||||
end = indices[i, 1]
|
||||
|
@ -756,7 +756,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
continue
|
||||
else:
|
||||
seen.add(start, end)
|
||||
|
||||
attrs_scores.append(argmax_scores[i])
|
||||
spans.append(Span(doc, start, end, label=labels[label]))
|
||||
|
||||
return spans
|
||||
|
|
Loading…
Reference in New Issue
Block a user