mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
Clean up spacy.cli.train
This commit is contained in:
parent
b9cea9cd93
commit
702fe74a4d
|
@ -14,7 +14,7 @@ from timeit import default_timer as timer
|
||||||
from ..tokens.doc import Doc
|
from ..tokens.doc import Doc
|
||||||
from ..scorer import Scorer
|
from ..scorer import Scorer
|
||||||
from ..gold import GoldParse, merge_sents
|
from ..gold import GoldParse, merge_sents
|
||||||
from ..gold import GoldCorpus
|
from ..gold import GoldCorpus, minibatch
|
||||||
from ..util import prints
|
from ..util import prints
|
||||||
from .. import util
|
from .. import util
|
||||||
from .. import displacy
|
from .. import displacy
|
||||||
|
@ -53,44 +53,38 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
|
||||||
if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies')
|
if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies')
|
||||||
if no_entities and 'entities' in pipeline: pipeline.remove('entities')
|
if no_entities and 'entities' in pipeline: pipeline.remove('entities')
|
||||||
|
|
||||||
|
# Take dropout and batch size as generators of values -- dropout
|
||||||
|
# starts high and decays sharply, to force the optimizer to explore.
|
||||||
|
# Batch size starts at 1 and grows, so that we make updates quickly
|
||||||
|
# at the beginning of training.
|
||||||
|
dropout_rates = util.decaying(util.env_opt('dropout_from', 0.0),
|
||||||
|
util.env_opt('dropout_to', 0.0),
|
||||||
|
util.env_opt('dropout_decay', 0.0))
|
||||||
|
batch_sizes = util.compounding(util.env_opt('batch_from', 1),
|
||||||
|
util.env_opt('batch_to', 64),
|
||||||
|
util.env_opt('batch_compound', 1.001))
|
||||||
|
|
||||||
nlp = lang_class(pipeline=pipeline)
|
nlp = lang_class(pipeline=pipeline)
|
||||||
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
|
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
|
||||||
|
n_train_docs = corpus.count_train()
|
||||||
dropout = util.env_opt('dropout', 0.0)
|
|
||||||
dropout_decay = util.env_opt('dropout_decay', 0.0)
|
|
||||||
orig_dropout = dropout
|
|
||||||
|
|
||||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
|
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
|
||||||
n_train_docs = corpus.count_train()
|
|
||||||
batch_size = float(util.env_opt('min_batch_size', 4))
|
|
||||||
max_batch_size = util.env_opt('max_batch_size', 64)
|
|
||||||
batch_accel = util.env_opt('batch_accel', 1.001)
|
|
||||||
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
|
||||||
for i in range(n_iter):
|
for i in range(n_iter):
|
||||||
with tqdm.tqdm(total=n_train_docs) as pbar:
|
with tqdm.tqdm(total=corpus.count_train()) as pbar:
|
||||||
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True,
|
train_docs = corpus.train_docs(nlp, projectivize=True,
|
||||||
gold_preproc=False)
|
gold_preproc=False, shuffle=i)
|
||||||
losses = {}
|
losses = {}
|
||||||
idx = 0
|
for batch in minibatch(train_docs, size=batch_sizes):
|
||||||
while idx < n_train_docs:
|
|
||||||
batch = list(cytoolz.take(int(batch_size), train_docs))
|
|
||||||
if not batch:
|
|
||||||
break
|
|
||||||
docs, golds = zip(*batch)
|
docs, golds = zip(*batch)
|
||||||
nlp.update(docs, golds, drop=dropout, sgd=optimizer, losses=losses)
|
nlp.update(docs, golds, sgd=optimizer,
|
||||||
|
drop=next(dropout_rates), losses=losses)
|
||||||
pbar.update(len(docs))
|
pbar.update(len(docs))
|
||||||
idx += len(docs)
|
|
||||||
batch_size *= batch_accel
|
|
||||||
batch_size = min(batch_size, max_batch_size)
|
|
||||||
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
|
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
start = timer()
|
|
||||||
scorer = nlp.evaluate(corpus.dev_docs(nlp, gold_preproc=False))
|
scorer = nlp.evaluate(corpus.dev_docs(nlp, gold_preproc=False))
|
||||||
end = timer()
|
print_progress(i, losses, scorer.scores)
|
||||||
n_words = scorer.tokens.tp + scorer.tokens.fn
|
|
||||||
assert n_words != 0
|
|
||||||
wps = n_words / (end-start)
|
|
||||||
print_progress(i, losses, scorer.scores, wps=wps)
|
|
||||||
with (output_path / 'model.bin').open('wb') as file_:
|
with (output_path / 'model.bin').open('wb') as file_:
|
||||||
with nlp.use_params(optimizer.averages):
|
with nlp.use_params(optimizer.averages):
|
||||||
dill.dump(nlp, file_, -1)
|
dill.dump(nlp, file_, -1)
|
||||||
|
@ -118,7 +112,6 @@ def print_progress(itn, losses, dev_scores, wps=0.0):
|
||||||
tpl = '\t'.join((
|
tpl = '\t'.join((
|
||||||
'{:d}',
|
'{:d}',
|
||||||
'{dep_loss:.3f}',
|
'{dep_loss:.3f}',
|
||||||
'{tag_loss:.3f}',
|
|
||||||
'{uas:.3f}',
|
'{uas:.3f}',
|
||||||
'{ents_p:.3f}',
|
'{ents_p:.3f}',
|
||||||
'{ents_r:.3f}',
|
'{ents_r:.3f}',
|
||||||
|
|
Loading…
Reference in New Issue
Block a user