mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-24 16:24:16 +03:00
Merge branch 'master' of https://github.com/HLasse/spaCy
This commit is contained in:
commit
70ab596f61
|
@ -41,10 +41,10 @@ da:
|
|||
word_vectors: da_core_news_lg
|
||||
transformer:
|
||||
efficiency:
|
||||
name: DJSammy/bert-base-danish-uncased_BotXO,ai
|
||||
name: Maltehb/danish-bert-botxo
|
||||
size_factor: 3
|
||||
accuracy:
|
||||
name: DJSammy/bert-base-danish-uncased_BotXO,ai
|
||||
name: Maltehb/danish-bert-botxo
|
||||
size_factor: 3
|
||||
de:
|
||||
word_vectors: de_core_news_lg
|
||||
|
|
|
@ -92,7 +92,6 @@ def test_simple_train():
|
|||
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
|
||||
|
||||
|
||||
|
||||
def test_ngram_suggester(en_tokenizer):
|
||||
# test different n-gram lengths
|
||||
for size in [1, 2, 3]:
|
||||
|
|
BIN
website/docs/images/prodigy_train_curve.jpg
Normal file
BIN
website/docs/images/prodigy_train_curve.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 200 KiB |
|
@ -758,16 +758,6 @@ workflows, but only one can be tracked by DVC.
|
|||
|
||||
### Prodigy {#prodigy} <IntegrationLogo name="prodigy" width={100} height="auto" align="right" />
|
||||
|
||||
<Infobox title="This section is still under construction" emoji="🚧" variant="warning">
|
||||
|
||||
The Prodigy integration will require a nightly version of Prodigy that supports
|
||||
spaCy v3+. You can already use annotations created with Prodigy in spaCy v3 by
|
||||
exporting your data with
|
||||
[`data-to-spacy`](https://prodi.gy/docs/recipes#data-to-spacy) and running
|
||||
[`spacy convert`](/api/cli#convert) to convert it to the binary format.
|
||||
|
||||
</Infobox>
|
||||
|
||||
[Prodigy](https://prodi.gy) is a modern annotation tool for creating training
|
||||
data for machine learning models, developed by us. It integrates with spaCy
|
||||
out-of-the-box and provides many different
|
||||
|
@ -776,17 +766,23 @@ with and without a model in the loop. If Prodigy is installed in your project,
|
|||
you can start the annotation server from your `project.yml` for a tight feedback
|
||||
loop between data development and training.
|
||||
|
||||
The following example command starts the Prodigy app using the
|
||||
[`ner.correct`](https://prodi.gy/docs/recipes#ner-correct) recipe and streams in
|
||||
suggestions for the given entity labels produced by a pretrained model. You can
|
||||
then correct the suggestions manually in the UI. After you save and exit the
|
||||
server, the full dataset is exported in spaCy's format and split into a training
|
||||
and evaluation set.
|
||||
<Infobox variant="warning">
|
||||
|
||||
This integration requires [Prodigy v1.11](https://prodi.gy/docs/changelog#v1.11)
|
||||
or higher. If you're using an older version of Prodigy, you can still use your
|
||||
annotations in spaCy v3 by exporting your data with
|
||||
[`data-to-spacy`](https://prodi.gy/docs/recipes#data-to-spacy) and running
|
||||
[`spacy convert`](/api/cli#convert) to convert it to the binary format.
|
||||
|
||||
</Infobox>
|
||||
|
||||
The following example shows a workflow for merging and exporting NER annotations
|
||||
collected with Prodigy and training a spaCy pipeline:
|
||||
|
||||
> #### Example usage
|
||||
>
|
||||
> ```cli
|
||||
> $ python -m spacy project run annotate
|
||||
> $ python -m spacy project run all
|
||||
> ```
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
|
@ -794,36 +790,71 @@ and evaluation set.
|
|||
### project.yml
|
||||
vars:
|
||||
prodigy:
|
||||
dataset: 'ner_articles'
|
||||
labels: 'PERSON,ORG,PRODUCT'
|
||||
model: 'en_core_web_md'
|
||||
train_dataset: "fashion_brands_training"
|
||||
eval_dataset: "fashion_brands_eval"
|
||||
|
||||
workflows:
|
||||
all:
|
||||
- data-to-spacy
|
||||
- train_spacy
|
||||
|
||||
commands:
|
||||
- name: annotate
|
||||
- script:
|
||||
- 'python -m prodigy ner.correct ${vars.prodigy.dataset} ${vars.prodigy.model} ./assets/raw_data.jsonl --labels ${vars.prodigy.labels}'
|
||||
- 'python -m prodigy data-to-spacy ./corpus/train.json ./corpus/eval.json --ner ${vars.prodigy.dataset}'
|
||||
- 'python -m spacy convert ./corpus/train.json ./corpus/train.spacy'
|
||||
- 'python -m spacy convert ./corpus/eval.json ./corpus/eval.spacy'
|
||||
- deps:
|
||||
- 'assets/raw_data.jsonl'
|
||||
- outputs:
|
||||
- 'corpus/train.spacy'
|
||||
- 'corpus/eval.spacy'
|
||||
- name: "data-to-spacy"
|
||||
help: "Merge your annotations and create data in spaCy's binary format"
|
||||
script:
|
||||
- "python -m prodigy data-to-spacy corpus/ --ner ${vars.prodigy.train_dataset},eval:${vars.prodigy.eval_dataset}"
|
||||
outputs:
|
||||
- "corpus/train.spacy"
|
||||
- "corpus/dev.spacy"
|
||||
- name: "train_spacy"
|
||||
help: "Train a named entity recognition model with spaCy"
|
||||
script:
|
||||
- "python -m spacy train configs/config.cfg --output training/ --paths.train corpus/train.spacy --paths.dev corpus/dev.spacy"
|
||||
deps:
|
||||
- "corpus/train.spacy"
|
||||
- "corpus/dev.spacy"
|
||||
outputs:
|
||||
- "training/model-best"
|
||||
```
|
||||
|
||||
You can use the same approach for other types of projects and annotation
|
||||
> #### Example train curve output
|
||||
>
|
||||
> [![Screenshot of train curve terminal output](../images/prodigy_train_curve.jpg)](https://prodi.gy/docs/recipes#train-curve)
|
||||
|
||||
The [`train-curve`](https://prodi.gy/docs/recipes#train-curve) recipe is another
|
||||
cool workflow you can include in your project. It will run the training with
|
||||
different portions of the data, e.g. 25%, 50%, 75% and 100%. As a rule of thumb,
|
||||
if accuracy increases in the last segment, this could indicate that collecting
|
||||
more annotations of the same type might improve the model further.
|
||||
|
||||
<!-- prettier-ignore -->
|
||||
```yaml
|
||||
### project.yml (excerpt)
|
||||
- name: "train_curve"
|
||||
help: "Train the model with Prodigy by using different portions of training examples to evaluate if more annotations can potentially improve the performance"
|
||||
script:
|
||||
- "python -m prodigy train-curve --ner ${vars.prodigy.train_dataset},eval:${vars.prodigy.eval_dataset} --config configs/${vars.config} --show-plot"
|
||||
```
|
||||
|
||||
You can use the same approach for various types of projects and annotation
|
||||
workflows, including
|
||||
[text classification](https://prodi.gy/docs/recipes#textcat),
|
||||
[dependency parsing](https://prodi.gy/docs/recipes#dep),
|
||||
[named entity recognition](https://prodi.gy/docs/named-entity-recognition),
|
||||
[span categorization](https://prodi.gy/docs/span-categorization),
|
||||
[text classification](https://prodi.gy/docs/text-classification),
|
||||
[dependency parsing](https://prodi.gy/docs/dependencies-relations),
|
||||
[part-of-speech tagging](https://prodi.gy/docs/recipes#pos) or fully
|
||||
[custom recipes](https://prodi.gy/docs/custom-recipes) – for instance, an A/B
|
||||
evaluation workflow that lets you compare two different models and their
|
||||
results.
|
||||
[custom recipes](https://prodi.gy/docs/custom-recipes). You can also use spaCy
|
||||
project templates to quickly start the annotation server to collect more
|
||||
annotations and add them to your Prodigy dataset.
|
||||
|
||||
<!-- TODO: <Project id="integrations/prodigy">
|
||||
<Project id="integrations/prodigy">
|
||||
|
||||
</Project> -->
|
||||
Get started with spaCy and Prodigy using our project template. It includes
|
||||
commands to create a merged training corpus from your Prodigy annotations,
|
||||
training and packaging a spaCy pipeline and analyzing if more annotations may
|
||||
improve performance.
|
||||
|
||||
</Project>
|
||||
|
||||
---
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user