Update Keras sentiment analysis example

This commit is contained in:
Matthew Honnibal 2017-11-05 17:11:00 +01:00
parent 2b35bb76ad
commit 717e8124fb

View File

@ -9,7 +9,9 @@ from keras.models import Sequential, model_from_json
from keras.layers import LSTM, Dense, Embedding, Dropout, Bidirectional
from keras.layers import TimeDistributed
from keras.optimizers import Adam
import cPickle as pickle
from spacy.compat import pickle
import thinc.extra.datasets
import spacy
@ -70,8 +72,11 @@ def get_features(docs, max_length):
for i, doc in enumerate(docs):
j = 0
for token in doc:
if token.has_vector and not token.is_punct and not token.is_space:
Xs[i, j] = token.rank + 1
vector_id = token.vocab.vectors.find(key=token.orth)
if vector_id >= 0:
Xs[i, j] = vector_id
else:
Xs[i, j] = 0
j += 1
if j >= max_length:
break
@ -82,12 +87,13 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
by_sentence=True):
print("Loading spaCy")
nlp = spacy.load('en', entity=False)
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts, batch_size=5000, n_threads=3))
dev_docs = list(nlp.pipe(dev_texts, batch_size=5000, n_threads=3))
train_docs = list(nlp.pipe(train_texts))
dev_docs = list(nlp.pipe(dev_texts))
if by_sentence:
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
@ -111,9 +117,10 @@ def compile_lstm(embeddings, shape, settings):
mask_zero=True
)
)
model.add(TimeDistributed(Dense(shape['nr_hidden'], bias=False)))
model.add(Bidirectional(LSTM(shape['nr_hidden'], dropout_U=settings['dropout'],
dropout_W=settings['dropout'])))
model.add(TimeDistributed(Dense(shape['nr_hidden'], use_bias=False)))
model.add(Bidirectional(LSTM(shape['nr_hidden'],
recurrent_dropout=settings['dropout'],
dropout=settings['dropout'])))
model.add(Dense(shape['nr_class'], activation='sigmoid'))
model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
metrics=['accuracy'])
@ -121,12 +128,7 @@ def compile_lstm(embeddings, shape, settings):
def get_embeddings(vocab):
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
vectors = numpy.ndarray((max_rank+1, vocab.vectors_length), dtype='float32')
for lex in vocab:
if lex.has_vector:
vectors[lex.rank + 1] = lex.vector
return vectors
return vocab.vectors.data
def evaluate(model_dir, texts, labels, max_length=100):
@ -174,22 +176,32 @@ def read_data(data_dir, limit=0):
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
)
def main(model_dir, train_dir, dev_dir,
def main(model_dir=None, train_dir=None, dev_dir=None,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=100, nr_examples=-1): # Training params
if model_dir is not None:
model_dir = pathlib.Path(model_dir)
train_dir = pathlib.Path(train_dir)
dev_dir = pathlib.Path(dev_dir)
if train_dir is None or dev_dir is None:
imdb_data = thinc.extra.datasets.imdb()
if is_runtime:
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
if train_dir is None:
train_texts, train_labels = zip(*imdb_data[0])
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
dev_texts, dev_labels = read_data(dev_dir, limit=nr_examples)
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir, imdb_data, limit=nr_examples)
train_labels = numpy.asarray(train_labels, dtype='int32')
dev_labels = numpy.asarray(dev_labels, dtype='int32')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
@ -198,6 +210,7 @@ def main(model_dir, train_dir, dev_dir,
{},
nb_epoch=nb_epoch, batch_size=batch_size)
weights = lstm.get_weights()
if model_dir is not None:
with (model_dir / 'model').open('wb') as file_:
pickle.dump(weights[1:], file_)
with (model_dir / 'config.json').open('wb') as file_: