mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Update training section in NER guide and add links
This commit is contained in:
parent
d5c8d2f5fd
commit
72380c952a
|
@ -154,40 +154,29 @@ p
|
|||
| To provide training examples to the entity recogniser, you'll first need
|
||||
| to create an instance of the #[+api("goldparse") #[code GoldParse]] class.
|
||||
| You can specify your annotations in a stand-off format or as token tags.
|
||||
|
||||
+code.
|
||||
import random
|
||||
import spacy
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.pipeline import EntityRecognizer
|
||||
|
||||
train_data = [('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
|
||||
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])]
|
||||
|
||||
nlp = spacy.load('en', entity=False, parser=False)
|
||||
ner = EntityRecognizer(nlp.vocab, entity_types=['PERSON', 'LOC'])
|
||||
|
||||
for itn in range(5):
|
||||
random.shuffle(train_data)
|
||||
for raw_text, entity_offsets in train_data:
|
||||
doc = nlp.make_doc(raw_text)
|
||||
gold = GoldParse(doc, entities=entity_offsets)
|
||||
|
||||
nlp.tagger(doc)
|
||||
ner.update(doc, gold)
|
||||
|
||||
p
|
||||
| If a character offset in your entity annotations don't fall on a token
|
||||
| boundary, the #[code GoldParse] class will treat that annotation as a
|
||||
| missing value. This allows for more realistic training, because the
|
||||
| entity recogniser is allowed to learn from examples that may feature
|
||||
| tokenizer errors.
|
||||
|
||||
+aside-code("Example").
|
||||
+code.
|
||||
train_data = [('Who is Chaka Khan?', [(7, 17, 'PERSON')]),
|
||||
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])]
|
||||
|
||||
+code.
|
||||
doc = Doc(nlp.vocab, [u'rats', u'make', u'good', u'pets'])
|
||||
gold = GoldParse(doc, [u'U-ANIMAL', u'O', u'O', u'O'])
|
||||
ner = EntityRecognizer(nlp.vocab, entity_types=['ANIMAL'])
|
||||
ner.update(doc, gold)
|
||||
|
||||
+infobox
|
||||
| For more details on #[strong training and updating] the named entity
|
||||
| recognizer, see the usage guides on #[+a("/docs/usage/training") training]
|
||||
| and #[+a("/docs/usage/training-ner") training the named entity recognizer],
|
||||
| or check out the runnable
|
||||
| #[+src(gh("spaCy", "examples/training/train_ner.py")) training script]
|
||||
| on GitHub.
|
||||
|
||||
+h(3, "updating-biluo") The BILUO Scheme
|
||||
|
||||
p
|
||||
| You can also provide token-level entity annotation, using the
|
||||
|
|
Loading…
Reference in New Issue
Block a user