diff --git a/website/docs/api/large-language-models.mdx b/website/docs/api/large-language-models.mdx index 43a95074a..845edaa1a 100644 --- a/website/docs/api/large-language-models.mdx +++ b/website/docs/api/large-language-models.mdx @@ -254,12 +254,14 @@ prompting. > max_n_words = null > ``` -| Argument | Description | -| ------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ | -| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ | +| Argument | Description | +| --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` | Custom prompt template to send to LLM model. Defaults to [summarization.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/summarization.v1.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SummarizationTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SummarizationExample`. ~~Optional[Type[FewshotExample]]~~ | +| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ | +| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ | The summarization task prompts the model for a concise summary of the provided text. It optionally allows to limit the response to a certain number of tokens - @@ -325,16 +327,19 @@ When no examples are [specified](/usage/large-language-models#few-shot-prompts), the v3 implementation will use a dummy example in the prompt. Technically this means that the task will always perform few-shot prompting under the hood. -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ | -| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `template` | Custom prompt template to send to LLM model. Defaults to [ner.v3.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v3.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | Note that the `single_match` parameter, used in v1 and v2, is not supported anymore, as the CoT parsing algorithm takes care of this automatically. @@ -415,16 +420,19 @@ v1. > examples = null > ``` -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | -| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | The parameters `alignment_mode`, `case_sensitive_matching` and `single_match` are identical to the [v1](#ner-v1) implementation. The format of few-shot @@ -467,14 +475,17 @@ few-shot prompting. > examples = null > ``` -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | Comma-separated list of labels. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | -| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[NERTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `NERExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | Comma-separated list of labels. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | The NER task implementation doesn't currently ask the LLM for specific offsets, but simply expects a list of strings that represent the enties in the document. @@ -539,17 +550,20 @@ support overlapping entities and store its annotations in `doc.spans`. > examples = null > ``` -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ | -| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | -| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `template` | Custom prompt template to send to LLM model. Defaults to [`spancat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v3.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `description` (NEW) | A description of what to recognize or not recognize as entities. ~~str~~ | +| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | Note that the `single_match` parameter, used in v1 and v2, is not supported anymore, as the CoT parsing algorithm takes care of this automatically. @@ -568,17 +582,20 @@ support overlapping entities and store its annotations in `doc.spans`. > examples = null > ``` -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ | -| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | -| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` (NEW) | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | Except for the `spans_key` parameter, the SpanCat v2 task reuses the configuration from the NER v2 task. Refer to [its documentation](#ner-v2) for @@ -599,15 +616,18 @@ v1 NER task to support overlapping entities and store its annotations in > examples = null > ``` -| Argument | Description | -| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| `labels` | Comma-separated list of labels. ~~str~~ | -| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | -| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | -| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SpanCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | Comma-separated list of labels. ~~str~~ | +| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ | +| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ | +| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ | Except for the `spans_key` parameter, the SpanCat v1 task reuses the configuration from the NER v1 task. Refer to [its documentation](#ner-v1) for @@ -636,16 +656,19 @@ prompt. > examples = null > ``` -| Argument | Description | -| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | -| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | -| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | -| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` | Custom prompt template to send to LLM model. Defaults to [`textcat.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v3.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` (NEW) | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | +| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | +| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | +| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | The formatting of few-shot examples is the same as those for the [v1](#textcat-v1) implementation. @@ -663,15 +686,18 @@ V2 includes all v1 functionality, with an improved prompt template. > examples = null > ``` -| Argument | Description | -| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | -| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | -| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` (NEW) | Custom prompt template to send to LLM model. Defaults to [`textcat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.v2.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | +| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | +| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | The formatting of few-shot examples is the same as those for the [v1](#textcat-v1) implementation. @@ -690,14 +716,17 @@ prompting. > examples = null > ``` -| Argument | Description | -| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `labels` | Comma-separated list of labels. ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | -| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Deafults to `False`. ~~bool~~ | -| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Deafults to `True`. ~~bool~~ | -| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Deafults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SpanCatTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `TextCatExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | Comma-separated list of labels. ~~str~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ | +| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ | +| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ | +| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), you can write down a few examples in a separate file, and provide these to be @@ -740,14 +769,17 @@ on an upstream NER component for entities extraction. > labels = ["LivesIn", "Visits"] > ``` -| Argument | Description | -| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | -| `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ | -| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | -| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | +| Argument | Description | +| --------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` | Custom prompt template to send to LLM model. Defaults to [`rel.v3.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.v1.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[RELTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `RELExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ | +| `label_definitions` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ | +| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ | +| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ | To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), you can write down a few examples in a separate file, and provide these to be @@ -793,10 +825,13 @@ This task supports both zero-shot and few-shot prompting. > examples = null > ``` -| Argument | Description | -| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| Argument | Description | +| --------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` | Custom prompt template to send to LLM model. Defaults to [lemma.v1.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.v1.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[LemmaTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `LemmaExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | The task prompts the LLM to lemmatize the passed text and return the lemmatized version as a list of tokens and their corresponding lemma. E. g. the text @@ -870,11 +905,14 @@ This task supports both zero-shot and few-shot prompting. > examples = null > ``` -| Argument | Description | -| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------ | -| `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ | -| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | -| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ | +| Argument | Description | +| --------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `template` | Custom prompt template to send to LLM model. Defaults to [sentiment.v1.jinja](./spacy_llm/tasks/templates/sentiment.v1.jinja). ~~str~~ | +| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ | +| `parse_responses` (NEW) | Callable for parsing LLM responses for this task. Defaults to the internal parsing method for this task. ~~Optional[TaskResponseParser[SentimentTask]]~~ | +| `prompt_example_type` (NEW) | Type to use for fewshot examples. Defaults to `SentimentExample`. ~~Optional[Type[FewshotExample]]~~ | +| `scorer` (NEW) | Scorer function that evaluates the task performance on provided examples. Defaults to the metric used by spaCy. ~~Optional[Scorer]~~ | +| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ | To perform [few-shot learning](/usage/large-language-models#few-shot-prompts), you can write down a few examples in a separate file, and provide these to be @@ -1042,6 +1080,21 @@ Currently, these models are provided as part of the core library: | `spacy.StableLM.v1` | Stability AI | `["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]` | https://huggingface.co/stabilityai | | `spacy.OpenLLaMA.v1` | OpenLM Research | `["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]` | https://huggingface.co/openlm-research | + + +Some models available on Hugging Face (HF), such as Llama 2, are _gated models_. +That means that users have to fulfill certain requirements to be allowed access +to these models. In the case of Llama 2 you'll need to request agree to Meta's +Terms of Service while logged in with your HF account. After Meta grants you +permission to use Llama 2, you'll be able to download and use the model. + +This requires that you are logged in with your HF account on your local +machine - check out the HF quick start documentation. In a nutshell, you'll need +to create an access token on HF and log in to HF using your access token, e. g. +with `huggingface-cli login`. + + + Note that Hugging Face will download the model the first time you use it - you can [define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)