mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
Rename function arguments
This commit is contained in:
parent
394e4d8058
commit
73565c6d9d
|
@ -70,32 +70,33 @@ def merge_sents(sents):
|
|||
return [(m_deps, m_brackets)]
|
||||
|
||||
|
||||
def align(cand_words, gold_words):
|
||||
def align(tokens_a, tokens_b):
|
||||
"""Calculate alignment tables between two tokenizations, using the Levenshtein
|
||||
algorithm. The alignment is case-insensitive.
|
||||
|
||||
cand_words (List[str]): The candidate tokenization.
|
||||
gold_words (List[str]): The reference tokenization.
|
||||
tokens_a (List[str]): The candidate tokenization.
|
||||
tokens_b (List[str]): The reference tokenization.
|
||||
RETURNS: (tuple): A 5-tuple consisting of the following information:
|
||||
* cost (int): The number of misaligned tokens.
|
||||
* a2b (List[int]): Mapping of indices in `cand_words` to indices in `gold_words`.
|
||||
For instance, if `a2b[4] == 6`, that means that `cand_words[4]` aligns
|
||||
to `gold_words[6]`. If there's no one-to-one alignment for a token,
|
||||
it has the value -1.
|
||||
* a2b (List[int]): Mapping of indices in `tokens_a` to indices in `tokens_b`.
|
||||
For instance, if `a2b[4] == 6`, that means that `tokens_a[4]` aligns
|
||||
to `tokens_b[6]`. If there's no one-to-one alignment for a token,
|
||||
it has the value -1.
|
||||
* b2a (List[int]): The same as `a2b`, but mapping the other direction.
|
||||
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `a` to indices
|
||||
in `b`, where multiple tokens of `a` align to the same token of `b`.
|
||||
* a2b_multi (Dict[int, int]): A dictionary mapping indices in `tokens_a`
|
||||
to indices in `tokens_b`, where multiple tokens of `tokens_a` align to
|
||||
the same token of `tokens_b`.
|
||||
* b2a_multi (Dict[int, int]): As with `a2b_multi`, but mapping the other
|
||||
direction.
|
||||
"""
|
||||
if cand_words == gold_words:
|
||||
alignment = numpy.arange(len(cand_words))
|
||||
if tokens_a == tokens_b:
|
||||
alignment = numpy.arange(len(tokens_a))
|
||||
return 0, alignment, alignment, {}, {}
|
||||
cand_words = [w.replace(" ", "").lower() for w in cand_words]
|
||||
gold_words = [w.replace(" ", "").lower() for w in gold_words]
|
||||
cost, i2j, j2i, matrix = _align.align(cand_words, gold_words)
|
||||
i2j_multi, j2i_multi = _align.multi_align(i2j, j2i, [len(w) for w in cand_words],
|
||||
[len(w) for w in gold_words])
|
||||
tokens_a = [w.replace(" ", "").lower() for w in tokens_a]
|
||||
tokens_b = [w.replace(" ", "").lower() for w in tokens_b]
|
||||
cost, i2j, j2i, matrix = _align.align(tokens_a, tokens_b)
|
||||
i2j_multi, j2i_multi = _align.multi_align(i2j, j2i, [len(w) for w in tokens_a],
|
||||
[len(w) for w in tokens_b])
|
||||
for i, j in list(i2j_multi.items()):
|
||||
if i2j_multi.get(i+1) != j and i2j_multi.get(i-1) != j:
|
||||
i2j[i] = j
|
||||
|
|
Loading…
Reference in New Issue
Block a user