mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Fix parser for GPU
This commit is contained in:
parent
260707a4c3
commit
7431e9c87f
|
@ -19,12 +19,10 @@ cdef struct WeightsC:
|
||||||
const float* feat_bias
|
const float* feat_bias
|
||||||
const float* hidden_bias
|
const float* hidden_bias
|
||||||
const float* hidden_weights
|
const float* hidden_weights
|
||||||
const float* vectors
|
|
||||||
|
|
||||||
|
|
||||||
cdef struct ActivationsC:
|
cdef struct ActivationsC:
|
||||||
int* token_ids
|
int* token_ids
|
||||||
float* vectors
|
|
||||||
float* unmaxed
|
float* unmaxed
|
||||||
float* scores
|
float* scores
|
||||||
float* hiddens
|
float* hiddens
|
||||||
|
|
|
@ -50,8 +50,6 @@ cdef WeightsC get_c_weights(model) except *:
|
||||||
cdef np.ndarray vec2scores_b = model.vec2scores.b
|
cdef np.ndarray vec2scores_b = model.vec2scores.b
|
||||||
output.hidden_weights = <const float*>vec2scores_W.data
|
output.hidden_weights = <const float*>vec2scores_W.data
|
||||||
output.hidden_bias = <const float*>vec2scores_b.data
|
output.hidden_bias = <const float*>vec2scores_b.data
|
||||||
cdef np.ndarray tokvecs = model.tokvecs
|
|
||||||
output.vectors = <float*>tokvecs.data
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,7 +70,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
||||||
return
|
return
|
||||||
if A._max_size == 0:
|
if A._max_size == 0:
|
||||||
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
||||||
A.vectors = <float*>calloc(n.states * n.embed_width, sizeof(A.vectors[0]))
|
|
||||||
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
||||||
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.pieces, sizeof(A.unmaxed[0]))
|
||||||
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
A.hiddens = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
||||||
|
@ -81,8 +78,6 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
||||||
else:
|
else:
|
||||||
A.token_ids = <int*>realloc(A.token_ids,
|
A.token_ids = <int*>realloc(A.token_ids,
|
||||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||||
A.vectors = <float*>realloc(A.vectors,
|
|
||||||
n.states * n.embed_width * sizeof(A.vectors[0]))
|
|
||||||
A.scores = <float*>realloc(A.scores,
|
A.scores = <float*>realloc(A.scores,
|
||||||
n.states * n.classes * sizeof(A.scores[0]))
|
n.states * n.classes * sizeof(A.scores[0]))
|
||||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||||
|
@ -242,7 +237,7 @@ class ParserStepModel(Model):
|
||||||
def begin_update(self, states, drop=0.):
|
def begin_update(self, states, drop=0.):
|
||||||
token_ids = self.get_token_ids(states)
|
token_ids = self.get_token_ids(states)
|
||||||
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
||||||
mask = self.ops.get_dropout_mask(vector.shape, drop)
|
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
vector *= mask
|
vector *= mask
|
||||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||||
|
@ -251,7 +246,7 @@ class ParserStepModel(Model):
|
||||||
d_vector = get_d_vector(d_scores, sgd=sgd)
|
d_vector = get_d_vector(d_scores, sgd=sgd)
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
d_vector *= mask
|
d_vector *= mask
|
||||||
if isinstance(self.ops, CupyOps) \
|
if isinstance(self.state2vec.ops, CupyOps) \
|
||||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||||
# Move token_ids and d_vector to GPU, asynchronously
|
# Move token_ids and d_vector to GPU, asynchronously
|
||||||
self.backprops.append((
|
self.backprops.append((
|
||||||
|
|
Loading…
Reference in New Issue
Block a user