mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-23 07:44:12 +03:00
WIP on hash kernel
This commit is contained in:
parent
2ac166eacd
commit
755d7d486c
1
setup.py
1
setup.py
|
@ -56,6 +56,7 @@ MOD_NAMES = [
|
|||
'spacy.lexeme',
|
||||
'spacy.vocab',
|
||||
'spacy.attrs',
|
||||
'spacy._ml',
|
||||
'spacy.morphology',
|
||||
'spacy.tagger',
|
||||
'spacy.pipeline',
|
||||
|
|
31
spacy/_ml.pxd
Normal file
31
spacy/_ml.pxd
Normal file
|
@ -0,0 +1,31 @@
|
|||
from thinc.linear.features cimport ConjunctionExtracter
|
||||
from thinc.typedefs cimport atom_t, weight_t
|
||||
from thinc.structs cimport FeatureC
|
||||
from libc.stdint cimport uint32_t
|
||||
cimport numpy as np
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
|
||||
cdef class LinearModel:
|
||||
cdef ConjunctionExtracter extracter
|
||||
cdef readonly int nr_class
|
||||
cdef readonly uint32_t nr_weight
|
||||
cdef public weight_t learn_rate
|
||||
cdef Pool mem
|
||||
cdef weight_t* W
|
||||
cdef weight_t* d_W
|
||||
|
||||
cdef void hinge_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil
|
||||
|
||||
cdef void log_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil
|
||||
|
||||
cdef void regression_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil
|
||||
|
||||
cdef void set_scoresC(self, weight_t* scores,
|
||||
const FeatureC* features, int nr_feat) nogil
|
||||
|
||||
cdef void set_gradientC(self, const weight_t* d_scores, const FeatureC*
|
||||
features, int nr_feat) nogil
|
151
spacy/_ml.pyx
Normal file
151
spacy/_ml.pyx
Normal file
|
@ -0,0 +1,151 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
# cython: cdivision=True
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
from libc.stdint cimport uint64_t, uint32_t, int32_t
|
||||
from libc.string cimport memcpy, memset
|
||||
cimport libcpp.algorithm
|
||||
from libc.math cimport exp
|
||||
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from murmurhash.mrmr cimport hash64
|
||||
cimport numpy as np
|
||||
import numpy
|
||||
np.import_array()
|
||||
|
||||
|
||||
cdef class LinearModel:
|
||||
def __init__(self, int nr_class, templates, weight_t learn_rate=0.001,
|
||||
size=2**18):
|
||||
self.extracter = ConjunctionExtracter(templates)
|
||||
self.nr_weight = size
|
||||
self.nr_class = nr_class
|
||||
self.learn_rate = learn_rate
|
||||
self.mem = Pool()
|
||||
self.W = <weight_t*>self.mem.alloc(self.nr_weight * self.nr_class,
|
||||
sizeof(weight_t))
|
||||
self.d_W = <weight_t*>self.mem.alloc(self.nr_weight * self.nr_class,
|
||||
sizeof(weight_t))
|
||||
|
||||
cdef void hinge_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil:
|
||||
guess = 0
|
||||
best = -1
|
||||
for i in range(1, self.nr_class):
|
||||
if scores[i] > scores[guess]:
|
||||
guess = i
|
||||
if costs[i] == 0 and (best == -1 or scores[i] > scores[best]):
|
||||
best = i
|
||||
if best != -1 and scores[guess] >= scores[best]:
|
||||
d_scores[guess] = 1.
|
||||
d_scores[best] = -1.
|
||||
|
||||
cdef void log_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil:
|
||||
for i in range(self.nr_class):
|
||||
if costs[i] <= 0:
|
||||
break
|
||||
else:
|
||||
return
|
||||
cdef double Z = 1e-10
|
||||
cdef double gZ = 1e-10
|
||||
cdef double max_ = scores[0]
|
||||
cdef double g_max = -9000
|
||||
for i in range(self.nr_class):
|
||||
max_ = max(max_, scores[i])
|
||||
if costs[i] <= 0:
|
||||
g_max = max(g_max, scores[i])
|
||||
for i in range(self.nr_class):
|
||||
Z += exp(scores[i]-max_)
|
||||
if costs[i] <= 0:
|
||||
gZ += exp(scores[i]-g_max)
|
||||
for i in range(self.nr_class):
|
||||
score = exp(scores[i]-max_)
|
||||
if costs[i] >= 1:
|
||||
d_scores[i] = score / Z
|
||||
else:
|
||||
g_score = exp(scores[i]-g_max)
|
||||
d_scores[i] = (score / Z) - (g_score / gZ)
|
||||
|
||||
cdef void regression_lossC(self, weight_t* d_scores,
|
||||
const weight_t* scores, const weight_t* costs) nogil:
|
||||
best = -1
|
||||
for i in range(self.nr_class):
|
||||
if costs[i] <= 0:
|
||||
if best == -1:
|
||||
best = i
|
||||
elif scores[i] > scores[best]:
|
||||
best = i
|
||||
if best == -1:
|
||||
return
|
||||
for i in range(self.nr_class):
|
||||
if scores[i] < scores[best]:
|
||||
d_scores[i] = 0
|
||||
elif costs[i] <= 0 and scores[i] == best:
|
||||
continue
|
||||
else:
|
||||
d_scores[i] = scores[i] - -costs[i]
|
||||
|
||||
cdef void set_scoresC(self, weight_t* scores,
|
||||
const FeatureC* features, int nr_feat) nogil:
|
||||
cdef uint64_t nr_weight = self.nr_weight
|
||||
cdef int nr_class = self.nr_class
|
||||
cdef vector[uint64_t] indices
|
||||
# Collect all feature indices
|
||||
cdef uint32_t[2] hashed
|
||||
cdef FeatureC feat
|
||||
cdef uint64_t hash2
|
||||
for feat in features[:nr_feat]:
|
||||
if feat.value == 0:
|
||||
continue
|
||||
memcpy(hashed, &feat.key, sizeof(hashed))
|
||||
indices.push_back(hashed[0] % nr_weight)
|
||||
indices.push_back(hashed[1] % nr_weight)
|
||||
|
||||
# Sort them, to improve memory access pattern
|
||||
libcpp.algorithm.sort(indices.begin(), indices.end())
|
||||
for idx in indices:
|
||||
W = &self.W[idx * nr_class]
|
||||
for clas in range(nr_class):
|
||||
scores[clas] += W[clas]
|
||||
|
||||
cdef void set_gradientC(self, const weight_t* d_scores, const FeatureC*
|
||||
features, int nr_feat) nogil:
|
||||
cdef uint64_t nr_weight = self.nr_weight
|
||||
cdef int nr_class = self.nr_class
|
||||
cdef vector[uint64_t] indices
|
||||
# Collect all feature indices
|
||||
cdef uint32_t[2] hashed
|
||||
cdef uint64_t hash2
|
||||
for feat in features[:nr_feat]:
|
||||
if feat.value == 0:
|
||||
continue
|
||||
memcpy(hashed, &feat.key, sizeof(hashed))
|
||||
indices.push_back(hashed[0] % nr_weight)
|
||||
indices.push_back(hashed[1] % nr_weight)
|
||||
|
||||
# Sort them, to improve memory access pattern
|
||||
libcpp.algorithm.sort(indices.begin(), indices.end())
|
||||
for idx in indices:
|
||||
W = &self.W[idx * nr_class]
|
||||
for clas in range(nr_class):
|
||||
if d_scores[clas] < 0:
|
||||
W[clas] -= self.learn_rate * max(-10., d_scores[clas])
|
||||
else:
|
||||
W[clas] -= self.learn_rate * min(10., d_scores[clas])
|
||||
|
||||
@property
|
||||
def nr_active_feat(self):
|
||||
return self.nr_weight
|
||||
|
||||
@property
|
||||
def nr_feat(self):
|
||||
return self.extracter.nr_templ
|
||||
|
||||
def end_training(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def dump(self, *args, **kwargs):
|
||||
pass
|
|
@ -4,13 +4,13 @@
|
|||
# https://github.com/pypa/warehouse/blob/master/warehouse/__about__.py
|
||||
|
||||
__title__ = 'spacy'
|
||||
__version__ = '1.6.0'
|
||||
__version__ = '1.7.0'
|
||||
__summary__ = 'Industrial-strength Natural Language Processing (NLP) with Python and Cython'
|
||||
__uri__ = 'https://spacy.io'
|
||||
__author__ = 'Matthew Honnibal'
|
||||
__email__ = 'matt@explosion.ai'
|
||||
__license__ = 'MIT'
|
||||
__models__ = {
|
||||
'en': 'en>=1.1.0,<1.2.0',
|
||||
'de': 'de>=1.0.0,<1.1.0',
|
||||
'en': 'en>=1.2.0,<1.3.0',
|
||||
'de': 'de>=1.2.0,<1.3.0',
|
||||
}
|
||||
|
|
|
@ -304,11 +304,13 @@ cdef cppclass StateC:
|
|||
this._break = this._b_i
|
||||
|
||||
void clone(const StateC* src) nogil:
|
||||
memcpy(this._sent, src._sent, this.length * sizeof(TokenC))
|
||||
memcpy(this._stack, src._stack, this.length * sizeof(int))
|
||||
memcpy(this._buffer, src._buffer, this.length * sizeof(int))
|
||||
memcpy(this._ents, src._ents, this.length * sizeof(Entity))
|
||||
memcpy(this.shifted, src.shifted, this.length * sizeof(this.shifted[0]))
|
||||
# This is still quadratic, but make it a it faster.
|
||||
# Not carefully reviewed for accuracy yet.
|
||||
memcpy(this._sent, src._sent, this.B(1) * sizeof(TokenC))
|
||||
memcpy(this._stack, src._stack, this._s_i * sizeof(int))
|
||||
memcpy(this._buffer, src._buffer, this._b_i * sizeof(int))
|
||||
memcpy(this._ents, src._ents, this._e_i * sizeof(Entity))
|
||||
memcpy(this.shifted, src.shifted, this.B(2) * sizeof(this.shifted[0]))
|
||||
this.length = src.length
|
||||
this._b_i = src._b_i
|
||||
this._s_i = src._s_i
|
||||
|
|
|
@ -70,7 +70,7 @@ cdef weight_t push_cost(StateClass stcls, const GoldParseC* gold, int target) no
|
|||
cdef weight_t pop_cost(StateClass stcls, const GoldParseC* gold, int target) nogil:
|
||||
cdef weight_t cost = 0
|
||||
cdef int i, B_i
|
||||
for i in range(stcls.buffer_length()):
|
||||
for i in range(min(30, stcls.buffer_length())):
|
||||
B_i = stcls.B(i)
|
||||
cost += gold.heads[B_i] == target
|
||||
cost += gold.heads[target] == B_i
|
||||
|
@ -268,10 +268,12 @@ cdef class Break:
|
|||
cdef int i, j, S_i, B_i
|
||||
for i in range(s.stack_depth()):
|
||||
S_i = s.S(i)
|
||||
for j in range(s.buffer_length()):
|
||||
for j in range(min(30, s.buffer_length())):
|
||||
B_i = s.B(j)
|
||||
cost += gold.heads[S_i] == B_i
|
||||
cost += gold.heads[B_i] == S_i
|
||||
if cost != 0:
|
||||
break
|
||||
# Check for sentence boundary --- if it's here, we can't have any deps
|
||||
# between stack and buffer, so rest of action is irrelevant.
|
||||
s0_root = _get_root(s.S(0), gold)
|
||||
|
@ -462,7 +464,7 @@ cdef class ArcEager(TransitionSystem):
|
|||
cdef int* labels = gold.c.labels
|
||||
cdef int* heads = gold.c.heads
|
||||
|
||||
n_gold = 0
|
||||
cdef int n_gold = 0
|
||||
for i in range(self.n_moves):
|
||||
if self.c[i].is_valid(stcls.c, self.c[i].label):
|
||||
is_valid[i] = True
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.typedefs cimport atom_t
|
||||
from thinc.linear.features cimport ConjunctionExtracter
|
||||
from thinc.typedefs cimport atom_t, weight_t
|
||||
from thinc.structs cimport FeatureC
|
||||
|
||||
from .stateclass cimport StateClass
|
||||
|
@ -8,17 +9,19 @@ from ..vocab cimport Vocab
|
|||
from ..tokens.doc cimport Doc
|
||||
from ..structs cimport TokenC
|
||||
from ._state cimport StateC
|
||||
from .._ml cimport LinearModel
|
||||
|
||||
|
||||
cdef class ParserModel(AveragedPerceptron):
|
||||
cdef class ParserModel(LinearModel):
|
||||
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||
const StateC* state) nogil
|
||||
|
||||
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly ParserModel model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object optimizer
|
||||
|
||||
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
# cython: infer_types=True
|
||||
# cython: cdivision=True
|
||||
# cython: profile=True
|
||||
"""
|
||||
MALT-style dependency parser
|
||||
"""
|
||||
|
@ -20,15 +22,22 @@ import shutil
|
|||
import json
|
||||
import sys
|
||||
from .nonproj import PseudoProjectivity
|
||||
import numpy
|
||||
import random
|
||||
cimport numpy as np
|
||||
np.import_array()
|
||||
|
||||
from cymem.cymem cimport Pool, Address
|
||||
from murmurhash.mrmr cimport hash64
|
||||
from murmurhash.mrmr cimport hash64, hash32
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.structs cimport SparseArrayC
|
||||
from preshed.maps cimport MapStruct
|
||||
from preshed.maps cimport map_get
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.optimizers import SGD
|
||||
|
||||
from thinc.structs cimport FeatureC
|
||||
from thinc.structs cimport ExampleC
|
||||
|
@ -51,6 +60,7 @@ from ._parse_features cimport CONTEXT_SIZE
|
|||
from ._parse_features cimport fill_context
|
||||
from .stateclass cimport StateClass
|
||||
from ._state cimport StateC
|
||||
from .._ml cimport LinearModel
|
||||
|
||||
|
||||
DEBUG = False
|
||||
|
@ -72,57 +82,65 @@ def get_templates(name):
|
|||
pf.tree_shape + pf.trigrams)
|
||||
|
||||
|
||||
cdef class ParserModel(AveragedPerceptron):
|
||||
#cdef class ParserModel(AveragedPerceptron):
|
||||
# cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||
# const StateC* state) nogil:
|
||||
# fill_context(context, state)
|
||||
# nr_feat = self.extracter.set_features(features, context)
|
||||
# return nr_feat
|
||||
#
|
||||
# def update(self, Example eg, itn=0):
|
||||
# '''Does regression on negative cost. Sort of cute?'''
|
||||
# self.time += 1
|
||||
# best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
||||
# guess = eg.guess
|
||||
# cdef weight_t loss = 0.0
|
||||
# if guess == best:
|
||||
# return loss
|
||||
# for clas in [guess, best]:
|
||||
# loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
|
||||
# d_loss = eg.c.scores[clas] - -eg.c.costs[clas]
|
||||
# for feat in eg.c.features[:eg.c.nr_feat]:
|
||||
# self.update_weight_ftrl(feat.key, clas, feat.value * d_loss)
|
||||
# return loss
|
||||
#
|
||||
# def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
|
||||
# cdef Pool mem = Pool()
|
||||
# features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
|
||||
#
|
||||
# cdef StateClass stcls
|
||||
#
|
||||
# cdef class_t clas
|
||||
# self.time += 1
|
||||
# cdef atom_t[CONTEXT_SIZE] atoms
|
||||
# histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
|
||||
# if not histories:
|
||||
# return None
|
||||
# gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
|
||||
# for d_loss, history in histories:
|
||||
# stcls = StateClass.init(doc.c, doc.length)
|
||||
# moves.initialize_state(stcls.c)
|
||||
# for clas in history:
|
||||
# nr_feat = self.set_featuresC(atoms, features, stcls.c)
|
||||
# clas_grad = gradient[clas]
|
||||
# for feat in features[:nr_feat]:
|
||||
# clas_grad[feat.key] += d_loss * feat.value
|
||||
# moves.c[clas].do(stcls.c, moves.c[clas].label)
|
||||
# cdef feat_t key
|
||||
# cdef weight_t d_feat
|
||||
# for clas, clas_grad in enumerate(gradient):
|
||||
# for key, d_feat in clas_grad.items():
|
||||
# if d_feat != 0:
|
||||
# self.update_weight_ftrl(key, clas, d_feat)
|
||||
#
|
||||
|
||||
cdef class ParserModel(LinearModel):
|
||||
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
|
||||
const StateC* state) nogil:
|
||||
fill_context(context, state)
|
||||
nr_feat = self.extracter.set_features(features, context)
|
||||
return nr_feat
|
||||
|
||||
def update(self, Example eg, itn=0):
|
||||
'''Does regression on negative cost. Sort of cute?'''
|
||||
self.time += 1
|
||||
best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
|
||||
guess = eg.guess
|
||||
cdef weight_t loss = 0.0
|
||||
if guess == best:
|
||||
return loss
|
||||
for clas in [guess, best]:
|
||||
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
|
||||
d_loss = eg.c.scores[clas] - -eg.c.costs[clas]
|
||||
for feat in eg.c.features[:eg.c.nr_feat]:
|
||||
self.update_weight_ftrl(feat.key, clas, feat.value * d_loss)
|
||||
return loss
|
||||
|
||||
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
|
||||
cdef Pool mem = Pool()
|
||||
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
|
||||
|
||||
cdef StateClass stcls
|
||||
|
||||
cdef class_t clas
|
||||
self.time += 1
|
||||
cdef atom_t[CONTEXT_SIZE] atoms
|
||||
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
|
||||
if not histories:
|
||||
return None
|
||||
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
|
||||
for d_loss, history in histories:
|
||||
stcls = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(stcls.c)
|
||||
for clas in history:
|
||||
nr_feat = self.set_featuresC(atoms, features, stcls.c)
|
||||
clas_grad = gradient[clas]
|
||||
for feat in features[:nr_feat]:
|
||||
clas_grad[feat.key] += d_loss * feat.value
|
||||
moves.c[clas].do(stcls.c, moves.c[clas].label)
|
||||
cdef feat_t key
|
||||
cdef weight_t d_feat
|
||||
for clas, clas_grad in enumerate(gradient):
|
||||
for key, d_feat in clas_grad.items():
|
||||
if d_feat != 0:
|
||||
self.update_weight_ftrl(key, clas, d_feat)
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
"""Base class of the DependencyParser and EntityRecognizer."""
|
||||
|
@ -174,9 +192,14 @@ cdef class Parser:
|
|||
cfg['features'] = get_templates(cfg['features'])
|
||||
elif 'features' not in cfg:
|
||||
cfg['features'] = self.feature_templates
|
||||
self.model = ParserModel(cfg['features'])
|
||||
self.model.l1_penalty = cfg.get('L1', 1e-8)
|
||||
self.model.learn_rate = cfg.get('learn_rate', 0.001)
|
||||
self.model = ParserModel(self.moves.n_moves, cfg['features'],
|
||||
size=2**18,
|
||||
learn_rate=cfg.get('learn_rate', 0.001))
|
||||
#self.model.l1_penalty = cfg.get('L1', 1e-8)
|
||||
#self.model.learn_rate = cfg.get('learn_rate', 0.001)
|
||||
|
||||
self.optimizer = SGD(NumpyOps(), cfg.get('learn_rate', 0.001),
|
||||
momentum=0.9)
|
||||
|
||||
self.cfg = cfg
|
||||
|
||||
|
@ -300,27 +323,48 @@ cdef class Parser:
|
|||
self.moves.preprocess_gold(gold)
|
||||
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
||||
self.moves.initialize_state(stcls.c)
|
||||
|
||||
cdef int nr_class = self.model.nr_class
|
||||
cdef Pool mem = Pool()
|
||||
cdef Example eg = Example(
|
||||
nr_class=self.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.model.nr_feat)
|
||||
d_scores = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
|
||||
scores = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
|
||||
costs = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
|
||||
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
||||
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
||||
cdef atom_t[CONTEXT_SIZE] context
|
||||
|
||||
cdef weight_t loss = 0
|
||||
cdef Transition action
|
||||
words = [w.text for w in tokens]
|
||||
|
||||
while not stcls.is_final():
|
||||
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
|
||||
stcls.c)
|
||||
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
||||
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
|
||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||
self.model.update(eg)
|
||||
|
||||
nr_feat = self.model.set_featuresC(context, features, stcls.c)
|
||||
self.moves.set_costs(is_valid, costs, stcls, gold)
|
||||
self.model.set_scoresC(scores, features, nr_feat)
|
||||
|
||||
guess = VecVec.arg_max_if_true(scores, is_valid, nr_class)
|
||||
best = arg_max_if_gold(scores, costs, nr_class)
|
||||
|
||||
self.model.regression_lossC(d_scores, scores, costs)
|
||||
self.model.set_gradientC(d_scores, features, nr_feat)
|
||||
|
||||
action = self.moves.c[guess]
|
||||
action.do(stcls.c, action.label)
|
||||
loss += eg.costs[guess]
|
||||
eg.fill_scores(0, eg.c.nr_class)
|
||||
eg.fill_costs(0, eg.c.nr_class)
|
||||
eg.fill_is_valid(1, eg.c.nr_class)
|
||||
#print(scores[guess], scores[best], d_scores[guess], costs[guess],
|
||||
# self.moves.move_name(action.move, action.label), stcls.print_state(words))
|
||||
|
||||
loss += scores[guess]
|
||||
memset(context, 0, sizeof(context))
|
||||
memset(features, 0, sizeof(features[0]) * nr_feat)
|
||||
memset(scores, 0, sizeof(scores[0]) * nr_class)
|
||||
memset(d_scores, 0, sizeof(d_scores[0]) * nr_class)
|
||||
memset(costs, 0, sizeof(costs[0]) * nr_class)
|
||||
for i in range(nr_class):
|
||||
is_valid[i] = 1
|
||||
#if itn % 100 == 0:
|
||||
# self.optimizer(self.model.model[0].ravel(),
|
||||
# self.model.model[1].ravel(), key=1)
|
||||
return loss
|
||||
|
||||
def step_through(self, Doc doc):
|
||||
|
|
|
@ -1,15 +1,14 @@
|
|||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.extra.eg cimport Example
|
||||
from thinc.structs cimport ExampleC
|
||||
from thinc.linear.features cimport ConjunctionExtracter
|
||||
|
||||
from .structs cimport TokenC
|
||||
from .vocab cimport Vocab
|
||||
from ._ml cimport LinearModel
|
||||
from thinc.structs cimport FeatureC
|
||||
from thinc.typedefs cimport atom_t
|
||||
|
||||
|
||||
cdef class TaggerModel:
|
||||
cdef ConjunctionExtracter extracter
|
||||
cdef object model
|
||||
cdef class TaggerModel(LinearModel):
|
||||
cdef int set_featuresC(self, FeatureC* features, atom_t* context,
|
||||
const TokenC* tokens, int i) nogil
|
||||
|
||||
|
||||
|
||||
cdef class Tagger:
|
||||
|
|
153
spacy/tagger.pyx
153
spacy/tagger.pyx
|
@ -16,9 +16,8 @@ from thinc.extra.eg cimport Example
|
|||
from thinc.structs cimport ExampleC
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.structs cimport FeatureC
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.optimizers import Adam, SGD
|
||||
from thinc.neural.ops import NumpyOps
|
||||
|
||||
from .typedefs cimport attr_t
|
||||
|
@ -80,69 +79,16 @@ cpdef enum:
|
|||
N_CONTEXT_FIELDS
|
||||
|
||||
|
||||
cdef class TaggerModel:
|
||||
def __init__(self, int nr_tag, templates):
|
||||
self.extracter = ConjunctionExtracter(templates)
|
||||
self.model = LinearModel(nr_tag)
|
||||
|
||||
def begin_update(self, atom_t[:, ::1] contexts, drop=0.):
|
||||
cdef vector[uint64_t]* keys = new vector[uint64_t]()
|
||||
cdef vector[float]* values = new vector[float]()
|
||||
cdef vector[int64_t]* lengths = new vector[int64_t]()
|
||||
features = new vector[FeatureC](self.extracter.nr_templ)
|
||||
features.resize(self.extracter.nr_templ)
|
||||
cdef FeatureC feat
|
||||
cdef int i, j
|
||||
for i in range(contexts.shape[0]):
|
||||
nr_feat = self.extracter.set_features(features.data(), &contexts[i, 0])
|
||||
for j in range(nr_feat):
|
||||
keys.push_back(features.at(j).key)
|
||||
values.push_back(features.at(j).value)
|
||||
lengths.push_back(nr_feat)
|
||||
cdef np.ndarray[uint64_t, ndim=1] py_keys
|
||||
cdef np.ndarray[float, ndim=1] py_values
|
||||
cdef np.ndarray[long, ndim=1] py_lengths
|
||||
py_keys = vector_uint64_2numpy(keys)
|
||||
py_values = vector_float_2numpy(values)
|
||||
py_lengths = vector_long_2numpy(lengths)
|
||||
instance = (py_keys, py_values, py_lengths)
|
||||
del keys
|
||||
del values
|
||||
del lengths
|
||||
del features
|
||||
return self.model.begin_update(instance, drop=drop)
|
||||
|
||||
def end_training(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def dump(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
cdef np.ndarray[uint64_t, ndim=1] vector_uint64_2numpy(vector[uint64_t]* vec):
|
||||
cdef np.ndarray[uint64_t, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='uint64')
|
||||
memcpy(arr.data, vec.data(), sizeof(uint64_t) * vec.size())
|
||||
return arr
|
||||
|
||||
|
||||
cdef np.ndarray[long, ndim=1] vector_long_2numpy(vector[int64_t]* vec):
|
||||
cdef np.ndarray[long, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='int64')
|
||||
memcpy(arr.data, vec.data(), sizeof(int64_t) * vec.size())
|
||||
return arr
|
||||
|
||||
|
||||
cdef np.ndarray[float, ndim=1] vector_float_2numpy(vector[float]* vec):
|
||||
cdef np.ndarray[float, ndim=1, mode="c"] arr = np.zeros(vec.size(), dtype='float32')
|
||||
memcpy(arr.data, vec.data(), sizeof(float) * vec.size())
|
||||
return arr
|
||||
|
||||
|
||||
cdef void fill_context(atom_t* context, const TokenC* tokens, int i) nogil:
|
||||
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
||||
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
||||
_fill_from_token(&context[W_orth], &tokens[i])
|
||||
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
||||
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
||||
cdef class TaggerModel(LinearModel):
|
||||
cdef int set_featuresC(self, FeatureC* features, atom_t* context,
|
||||
const TokenC* tokens, int i) nogil:
|
||||
_fill_from_token(&context[P2_orth], &tokens[i-2])
|
||||
_fill_from_token(&context[P1_orth], &tokens[i-1])
|
||||
_fill_from_token(&context[W_orth], &tokens[i])
|
||||
_fill_from_token(&context[N1_orth], &tokens[i+1])
|
||||
_fill_from_token(&context[N2_orth], &tokens[i+2])
|
||||
nr_feat = self.extracter.set_features(features, context)
|
||||
return nr_feat
|
||||
|
||||
|
||||
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
||||
|
@ -213,8 +159,10 @@ cdef class Tagger:
|
|||
The newly constructed object.
|
||||
"""
|
||||
if model is None:
|
||||
print("Create tagger")
|
||||
model = TaggerModel(vocab.morphology.n_tags,
|
||||
cfg.get('features', self.feature_templates))
|
||||
cfg.get('features', self.feature_templates),
|
||||
learn_rate=0.01, size=2**18)
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
# TODO: Move this to tag map
|
||||
|
@ -223,7 +171,7 @@ cdef class Tagger:
|
|||
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
||||
self.freqs[TAG][0] = 1
|
||||
self.cfg = cfg
|
||||
self.optimizer = Adam(NumpyOps(), 0.001)
|
||||
self.optimizer = SGD(NumpyOps(), 0.001, momentum=0.9)
|
||||
|
||||
@property
|
||||
def tag_names(self):
|
||||
|
@ -250,20 +198,22 @@ cdef class Tagger:
|
|||
if tokens.length == 0:
|
||||
return 0
|
||||
|
||||
cdef atom_t[1][N_CONTEXT_FIELDS] c_context
|
||||
memset(c_context, 0, sizeof(c_context))
|
||||
cdef atom_t[:, ::1] context = c_context
|
||||
cdef float[:, ::1] scores
|
||||
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||
|
||||
cdef int nr_class = self.vocab.morphology.n_tags
|
||||
cdef Pool mem = Pool()
|
||||
scores = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
|
||||
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
|
||||
for i in range(tokens.length):
|
||||
if tokens.c[i].pos == 0:
|
||||
fill_context(&context[0, 0], tokens.c, i)
|
||||
scores, _ = self.model.begin_update(context)
|
||||
|
||||
guess = Vec.arg_max(&scores[0, 0], nr_class)
|
||||
nr_feat = self.model.set_featuresC(features, context, tokens.c, i)
|
||||
self.model.set_scoresC(scores,
|
||||
features, nr_feat)
|
||||
guess = Vec.arg_max(scores, nr_class)
|
||||
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
||||
memset(&scores[0, 0], 0, sizeof(float) * scores.size)
|
||||
memset(scores, 0, sizeof(weight_t) * nr_class)
|
||||
memset(features, 0, sizeof(FeatureC) * nr_feat)
|
||||
memset(context, 0, sizeof(N_CONTEXT_FIELDS))
|
||||
tokens.is_tagged = True
|
||||
tokens._py_tokens = [None] * tokens.length
|
||||
|
||||
|
@ -295,7 +245,6 @@ cdef class Tagger:
|
|||
Returns (int):
|
||||
Number of tags correct.
|
||||
"""
|
||||
cdef int nr_class = self.vocab.morphology.n_tags
|
||||
gold_tag_strs = gold.tags
|
||||
assert len(tokens) == len(gold_tag_strs)
|
||||
for tag in gold_tag_strs:
|
||||
|
@ -303,27 +252,47 @@ cdef class Tagger:
|
|||
msg = ("Unrecognized gold tag: %s. tag_map.json must contain all "
|
||||
"gold tags, to maintain coarse-grained mapping.")
|
||||
raise ValueError(msg % tag)
|
||||
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
||||
cdef Pool mem = Pool()
|
||||
golds = <int*>mem.alloc(sizeof(int), len(gold_tag_strs))
|
||||
for i, g in enumerate(gold_tag_strs):
|
||||
golds[i] = self.tag_names.index(g) if g is not None else -1
|
||||
|
||||
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||
cdef int nr_class = self.model.nr_class
|
||||
costs = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
||||
features = <FeatureC*>mem.alloc(sizeof(FeatureC), self.model.nr_feat)
|
||||
scores = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
||||
d_scores = <weight_t*>mem.alloc(sizeof(weight_t), nr_class)
|
||||
|
||||
cdef int correct = 0
|
||||
|
||||
cdef atom_t[:, ::1] context = np.zeros((1, N_CONTEXT_FIELDS), dtype='uint64')
|
||||
cdef float[:, ::1] scores
|
||||
|
||||
for i in range(tokens.length):
|
||||
fill_context(&context[0, 0], tokens.c, i)
|
||||
scores, finish_update = self.model.begin_update(context)
|
||||
guess = Vec.arg_max(&scores[0, 0], nr_class)
|
||||
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
||||
nr_feat = self.model.set_featuresC(features, context, tokens.c, i)
|
||||
self.model.set_scoresC(scores,
|
||||
features, nr_feat)
|
||||
|
||||
if golds[i] != -1:
|
||||
scores[0, golds[i]] -= 1
|
||||
finish_update(scores, lambda *args, **kwargs: None)
|
||||
for j in range(nr_class):
|
||||
costs[j] = 1
|
||||
costs[golds[i]] = 0
|
||||
self.model.log_lossC(d_scores, scores, costs)
|
||||
self.model.set_gradientC(d_scores, features, nr_feat)
|
||||
|
||||
guess = Vec.arg_max(scores, nr_class)
|
||||
#print(tokens[i].text, golds[i], guess, [features[i].key for i in range(nr_feat)])
|
||||
|
||||
self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
|
||||
|
||||
if (golds[i] in (guess, -1)):
|
||||
correct += 1
|
||||
self.freqs[TAG][tokens.c[i].tag] += 1
|
||||
self.optimizer(self.model.model.weights, self.model.model.d_weights,
|
||||
key=self.model.model.id)
|
||||
correct += costs[guess] == 0
|
||||
|
||||
memset(features, 0, sizeof(FeatureC) * nr_feat)
|
||||
memset(costs, 0, sizeof(weight_t) * nr_class)
|
||||
memset(scores, 0, sizeof(weight_t) * nr_class)
|
||||
memset(d_scores, 0, sizeof(weight_t) * nr_class)
|
||||
|
||||
#if itn % 10 == 0:
|
||||
# self.optimizer(self.model.weights.ravel(), self.model.d_weights.ravel(),
|
||||
# key=1)
|
||||
tokens.is_tagged = True
|
||||
tokens._py_tokens = [None] * tokens.length
|
||||
return correct
|
||||
|
|
|
@ -14,6 +14,7 @@ class Trainer(object):
|
|||
self.nlp = nlp
|
||||
self.gold_tuples = gold_tuples
|
||||
self.nr_epoch = 0
|
||||
self.nr_itn = 0
|
||||
|
||||
def epochs(self, nr_epoch, augment_data=None, gold_preproc=False):
|
||||
cached_golds = {}
|
||||
|
@ -36,6 +37,7 @@ class Trainer(object):
|
|||
golds = self.make_golds(docs, paragraph_tuples)
|
||||
for doc, gold in zip(docs, golds):
|
||||
yield doc, gold
|
||||
self.nr_itn += 1
|
||||
|
||||
indices = list(range(len(self.gold_tuples)))
|
||||
for itn in range(nr_epoch):
|
||||
|
@ -46,7 +48,7 @@ class Trainer(object):
|
|||
def update(self, doc, gold):
|
||||
for process in self.nlp.pipeline:
|
||||
if hasattr(process, 'update'):
|
||||
loss = process.update(doc, gold, itn=self.nr_epoch)
|
||||
loss = process.update(doc, gold, itn=self.nr_itn)
|
||||
process(doc)
|
||||
return doc
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user