mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-04 11:53:09 +03:00
Start refactoring of Candidate classes.
This commit is contained in:
parent
7e6888dcd4
commit
75aee55bc3
|
@ -1,12 +0,0 @@
|
|||
from .kb cimport KnowledgeBase
|
||||
from libcpp.vector cimport vector
|
||||
from ..typedefs cimport hash_t
|
||||
|
||||
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
|
||||
cdef class Candidate:
|
||||
cdef readonly KnowledgeBase kb
|
||||
cdef hash_t entity_hash
|
||||
cdef float entity_freq
|
||||
cdef vector[float] entity_vector
|
||||
cdef hash_t alias_hash
|
||||
cdef float prior_prob
|
127
spacy/kb/candidate.py
Normal file
127
spacy/kb/candidate.py
Normal file
|
@ -0,0 +1,127 @@
|
|||
import abc
|
||||
from typing import List, Union, Optional
|
||||
|
||||
from spacy import Errors
|
||||
from ..tokens import Span
|
||||
|
||||
|
||||
class Candidate(abc.ABC):
|
||||
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity_id` from a Knowledge Base. This will be used as input for the entity_id linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (alias, entity_id) pair is assigned a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/kb/#candidate-init
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, mention: str, entity_id: Union[int, str], entity_vector: List[float]
|
||||
):
|
||||
"""Create new instance of `Candidate`. Note: has to be a sub-class, otherwise error will be raised.
|
||||
mention (str): Mention text for this candidate.
|
||||
entity_id (Union[int, str]): Unique ID of entity_id.
|
||||
"""
|
||||
self.mention = mention
|
||||
self.entity = entity_id
|
||||
self.entity_vector = entity_vector
|
||||
|
||||
@property
|
||||
def entity_id(self) -> Union[int, str]:
|
||||
"""RETURNS (Union[int, str]): Entity ID."""
|
||||
return self.entity
|
||||
|
||||
def entity_(self) -> Union[int, str]:
|
||||
"""RETURNS (Union[int, str]): Entity ID (for backwards compatibility)."""
|
||||
return self.entity
|
||||
|
||||
@property
|
||||
def mention(self) -> str:
|
||||
"""RETURNS (str): Mention."""
|
||||
return self.mention
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> List[float]:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self.entity_vector
|
||||
|
||||
|
||||
class InMemoryLookupKBCandidate(Candidate):
|
||||
"""`Candidate` for InMemoryLookupKBCandidate."""
|
||||
|
||||
# todo how to resolve circular import issue? -> replace with callable for hash?
|
||||
def __init__(
|
||||
self,
|
||||
kb: KnowledgeBase,
|
||||
entity_hash,
|
||||
entity_freq,
|
||||
entity_vector,
|
||||
alias_hash,
|
||||
prior_prob,
|
||||
):
|
||||
"""
|
||||
prior_prob (float): Prior probability of entity_id for this mention - i.e. the probability that, independent of the
|
||||
context, this mention resolves to this entity_id in the corpus used to build the knowledge base. In cases in
|
||||
which this isn't always possible (e.g.: the corpus to analyse contains mentions that the KB corpus doesn't)
|
||||
it might be better to eschew this information and always supply the same value.
|
||||
"""
|
||||
self.kb = kb
|
||||
self.entity_hash = entity_hash
|
||||
self.entity_freq = entity_freq
|
||||
self.entity_vector = entity_vector
|
||||
self.alias_hash = alias_hash
|
||||
self.prior_prob = prior_prob
|
||||
|
||||
@property
|
||||
def entity(self) -> int:
|
||||
"""RETURNS (uint64): hash of the entity_id's KB ID/name"""
|
||||
return self.entity_hash
|
||||
|
||||
@property
|
||||
def entity_(self) -> str:
|
||||
"""RETURNS (str): ID/name of this entity_id in the KB"""
|
||||
return self.kb.vocab.strings[self.entity_hash]
|
||||
|
||||
@property
|
||||
def alias(self) -> int:
|
||||
"""RETURNS (uint64): hash of the alias"""
|
||||
return self.alias_hash
|
||||
|
||||
@property
|
||||
def alias_(self) -> str:
|
||||
"""RETURNS (str): ID of the original alias"""
|
||||
return self.kb.vocab.strings[self.alias_hash]
|
||||
|
||||
@property
|
||||
def entity_freq(self) -> float:
|
||||
return self.entity_freq
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> Iterable[float]:
|
||||
return self.entity_vector
|
||||
|
||||
@property
|
||||
def prior_prob(self) -> float:
|
||||
"""RETURNS (List[float]): Entity vector."""
|
||||
return self.prior_prob
|
||||
|
||||
|
||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
|
||||
"""
|
||||
Return candidate entities for a given mention and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Span): Entity mention for which to identify candidates.
|
||||
RETURNS (Iterable[Candidate]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates(mention)
|
||||
|
||||
|
||||
def get_candidates_all(
|
||||
kb: KnowledgeBase, mentions: Generator[Iterable[Span], None, None]
|
||||
) -> Iterator[Iterable[Iterable[Candidate]]]:
|
||||
"""
|
||||
Return candidate entities for the given mentions and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Generator[Iterable[Span]]): Entity mentions per document for which to identify candidates.
|
||||
RETURNS (Generator[Iterable[Iterable[Candidate]]]): Identified candidates per document.
|
||||
"""
|
||||
return kb.get_candidates_all(mentions)
|
|
@ -1,76 +0,0 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
|
||||
from typing import Iterable, Generator, Iterator
|
||||
from .kb cimport KnowledgeBase
|
||||
from ..tokens import Span
|
||||
|
||||
cdef class Candidate:
|
||||
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (alias, entity) pair is assigned a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/kb/#candidate-init
|
||||
"""
|
||||
|
||||
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
|
||||
self.kb = kb
|
||||
self.entity_hash = entity_hash
|
||||
self.entity_freq = entity_freq
|
||||
self.entity_vector = entity_vector
|
||||
self.alias_hash = alias_hash
|
||||
self.prior_prob = prior_prob
|
||||
|
||||
@property
|
||||
def entity(self) -> int:
|
||||
"""RETURNS (uint64): hash of the entity's KB ID/name"""
|
||||
return self.entity_hash
|
||||
|
||||
@property
|
||||
def entity_(self) -> str:
|
||||
"""RETURNS (str): ID/name of this entity in the KB"""
|
||||
return self.kb.vocab.strings[self.entity_hash]
|
||||
|
||||
@property
|
||||
def alias(self) -> int:
|
||||
"""RETURNS (uint64): hash of the alias"""
|
||||
return self.alias_hash
|
||||
|
||||
@property
|
||||
def alias_(self) -> str:
|
||||
"""RETURNS (str): ID of the original alias"""
|
||||
return self.kb.vocab.strings[self.alias_hash]
|
||||
|
||||
@property
|
||||
def entity_freq(self) -> float:
|
||||
return self.entity_freq
|
||||
|
||||
@property
|
||||
def entity_vector(self) -> Iterable[float]:
|
||||
return self.entity_vector
|
||||
|
||||
@property
|
||||
def prior_prob(self) -> float:
|
||||
return self.prior_prob
|
||||
|
||||
|
||||
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
|
||||
"""
|
||||
Return candidate entities for a given mention and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Span): Entity mention for which to identify candidates.
|
||||
RETURNS (Iterable[Candidate]): Identified candidates.
|
||||
"""
|
||||
return kb.get_candidates(mention)
|
||||
|
||||
|
||||
def get_candidates_all(
|
||||
kb: KnowledgeBase, mentions: Generator[Iterable[Span], None, None]
|
||||
) -> Iterator[Iterable[Iterable[Candidate]]]:
|
||||
"""
|
||||
Return candidate entities for the given mentions and fetching appropriate entries from the index.
|
||||
kb (KnowledgeBase): Knowledge base to query.
|
||||
mention (Generator[Iterable[Span]]): Entity mentions per document for which to identify candidates.
|
||||
RETURNS (Generator[Iterable[Iterable[Candidate]]]): Identified candidates per document.
|
||||
"""
|
||||
return kb.get_candidates_all(mentions)
|
|
@ -532,9 +532,12 @@ class EntityLinker(TrainablePipe):
|
|||
else:
|
||||
random.shuffle(candidates)
|
||||
# set all prior probabilities to 0 if incl_prior=False
|
||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||
if not self.incl_prior:
|
||||
prior_probs = xp.asarray([0.0 for _ in candidates])
|
||||
prior_probs = xp.asarray(
|
||||
[
|
||||
0.0 if self.incl_prior else c.prior_prob
|
||||
for c in candidates
|
||||
]
|
||||
)
|
||||
scores = prior_probs
|
||||
# add in similarity from the context
|
||||
if self.incl_context:
|
||||
|
|
Loading…
Reference in New Issue
Block a user