mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
set_annotations: add type annotations
This commit is contained in:
parent
ce36f345db
commit
75d76cb2a3
|
@ -1,7 +1,8 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Callable, Dict, List, Optional, Union
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
import srsly
|
||||
from thinc.api import SequenceCategoricalCrossentropy, Model, Config
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
from itertools import islice
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
@ -229,7 +230,7 @@ class Morphologizer(Tagger):
|
|||
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
||||
self.model.initialize(X=doc_sample, Y=label_sample)
|
||||
|
||||
def set_annotations(self, docs, activations):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: Dict[str, Union[Floats2d, Ints1d]]):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Optional, Callable, List, Union
|
||||
from typing import Dict, Iterable, Optional, Callable, List, Union
|
||||
from itertools import islice
|
||||
|
||||
import srsly
|
||||
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
|
@ -121,7 +122,7 @@ class SentenceRecognizer(Tagger):
|
|||
def label_data(self):
|
||||
return None
|
||||
|
||||
def set_annotations(self, docs, activations):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: Dict[str, Union[List[Floats2d], List[Ints1d]]]):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
|
|
@ -298,7 +298,9 @@ class SpanCategorizer(TrainablePipe):
|
|||
for index in candidates.dataXd:
|
||||
doc.spans[candidates_key].append(doc[index[0] : index[1]])
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], activations) -> None:
|
||||
def set_annotations(
|
||||
self, docs: Iterable[Doc], activations: Dict[str, Union[Floats2d, Ragged]]
|
||||
) -> None:
|
||||
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
@ -309,7 +311,9 @@ class SpanCategorizer(TrainablePipe):
|
|||
labels = self.labels
|
||||
|
||||
indices = activations["indices"]
|
||||
scores = activations["scores"]
|
||||
assert isinstance(indices, Ragged)
|
||||
scores = cast(Floats2d, activations["scores"])
|
||||
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
indices_i = indices[i].dataXd
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# cython: infer_types=True, profile=True, binding=True
|
||||
from typing import Callable, List, Optional, Union
|
||||
from typing import Callable, Dict, Iterable, List, Optional, Union
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
||||
from thinc.types import Floats2d
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
import warnings
|
||||
from itertools import islice
|
||||
|
||||
|
@ -167,7 +167,7 @@ class Tagger(TrainablePipe):
|
|||
guesses.append(doc_guesses)
|
||||
return guesses
|
||||
|
||||
def set_annotations(self, docs, activations):
|
||||
def set_annotations(self, docs: Iterable[Doc], activations: Dict[str, Union[List[Floats2d], List[Ints1d]]]):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
|
|
@ -212,7 +212,7 @@ class TextCategorizer(TrainablePipe):
|
|||
scores = self.model.ops.asarray(scores)
|
||||
return scores
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], scores) -> None:
|
||||
def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
|
||||
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||
|
||||
docs (Iterable[Doc]): The documents to modify.
|
||||
|
|
Loading…
Reference in New Issue
Block a user