Update Chinese usage docs

This commit is contained in:
Adriane Boyd 2020-10-02 10:09:03 +02:00
parent 3908fff899
commit 7670df04dd

View File

@ -85,7 +85,8 @@ import the `MultiLanguage` class directly, or call
### Chinese language support {#chinese new=2.3}
The Chinese language class supports three word segmentation options:
The Chinese language class supports three word segmentation options, `char`,
`jieba` and `pkuseg`:
> ```python
> from spacy.lang.zh import Chinese
@ -95,11 +96,12 @@ The Chinese language class supports three word segmentation options:
>
> # Jieba
> cfg = {"segmenter": "jieba"}
> nlp = Chinese(meta={"tokenizer": {"config": cfg}})
> nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
>
> # PKUSeg with "default" model provided by pkuseg
> cfg = {"segmenter": "pkuseg", "pkuseg_model": "default"}
> nlp = Chinese(meta={"tokenizer": {"config": cfg}})
> cfg = {"segmenter": "pkuseg"}
> nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
> nlp.tokenizer.initialize(pkuseg_model="default")
> ```
1. **Character segmentation:** Character segmentation is the default
@ -116,41 +118,34 @@ The Chinese language class supports three word segmentation options:
<Infobox variant="warning">
In spaCy v3.0, the default Chinese word segmenter has switched from Jieba to
character segmentation. Also note that
[`pkuseg`](https://github.com/lancopku/pkuseg-python) doesn't yet ship with
pre-compiled wheels for Python 3.8. If you're running Python 3.8, you can
install it from our fork and compile it locally:
```bash
$ pip install https://github.com/honnibal/pkuseg-python/archive/master.zip
```
character segmentation.
</Infobox>
<Accordion title="Details on spaCy's Chinese API">
The `meta` argument of the `Chinese` language class supports the following
following tokenizer config settings:
The `initialize` method for the Chinese tokenizer class supports the following
config settings for loading pkuseg models:
| Name | Description |
| ------------------ | --------------------------------------------------------------------------------------------------------------- |
| `segmenter` | Word segmenter: `char`, `jieba` or `pkuseg`. Defaults to `char`. ~~str~~ |
| `pkuseg_model` | **Required for `pkuseg`:** Name of a model provided by `pkuseg` or the path to a local model directory. ~~str~~ |
| `pkuseg_user_dict` | Optional path to a file with one word per line which overrides the default `pkuseg` user dictionary. ~~str~~ |
| Name | Description |
| ------------------ | ------------------------------------------------------------------------------------------------------------------------------------- |
| `pkuseg_model` | Name of a model provided by `pkuseg` or the path to a local model directory. ~~str~~ |
| `pkuseg_user_dict` | Optional path to a file with one word per line which overrides the default `pkuseg` user dictionary. Defaults to `"default"`. ~~str~~ |
```python
### Examples
# Initialize the pkuseg tokenizer
cfg = {"segmenter": "pkuseg"}
nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
# Load "default" model
cfg = {"segmenter": "pkuseg", "pkuseg_model": "default"}
nlp = Chinese(config={"tokenizer": {"config": cfg}})
nlp.tokenizer.initialize(pkuseg_model="default")
# Load local model
cfg = {"segmenter": "pkuseg", "pkuseg_model": "/path/to/pkuseg_model"}
nlp = Chinese(config={"tokenizer": {"config": cfg}})
nlp.tokenizer.initialize(pkuseg_model="/path/to/pkuseg_model")
# Override the user directory
cfg = {"segmenter": "pkuseg", "pkuseg_model": "default", "pkuseg_user_dict": "/path"}
nlp = Chinese(config={"tokenizer": {"config": cfg}})
nlp.tokenizer.initialize(pkuseg_model="default", pkuseg_user_dict="/path/to/user_dict")
```
You can also modify the user dictionary on-the-fly:
@ -185,8 +180,11 @@ from spacy.lang.zh import Chinese
# Train pkuseg model
pkuseg.train("train.utf8", "test.utf8", "/path/to/pkuseg_model")
# Load pkuseg model in spaCy Chinese tokenizer
nlp = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "/path/to/pkuseg_model", "require_pkuseg": True}}})
cfg = {"segmenter": "pkuseg"}
nlp = Chinese.from_config({"nlp": {"tokenizer": cfg}})
nlp.tokenizer.initialize(pkuseg_model="/path/to/pkuseg_model")
```
</Accordion>