Use Literal type for nr_feature_tokens

This commit is contained in:
Ines Montani 2020-09-23 16:00:03 +02:00
parent e4e7f5b00d
commit 76bbed3466
5 changed files with 21 additions and 3 deletions

View File

@ -20,6 +20,7 @@ pytokenizations
setuptools setuptools
packaging packaging
importlib_metadata>=0.20; python_version < "3.8" importlib_metadata>=0.20; python_version < "3.8"
typing_extensions>=3.7.4; python_version < "3.8"
# Development dependencies # Development dependencies
cython>=0.25 cython>=0.25
pytest>=4.6.5 pytest>=4.6.5

View File

@ -57,6 +57,7 @@ install_requires =
setuptools setuptools
packaging packaging
importlib_metadata>=0.20; python_version < "3.8" importlib_metadata>=0.20; python_version < "3.8"
typing_extensions>=3.7.4; python_version < "3.8"
[options.entry_points] [options.entry_points]
console_scripts = console_scripts =

View File

@ -22,6 +22,11 @@ try:
except ImportError: except ImportError:
cupy = None cupy = None
try: # Python 3.8+
from typing import Literal
except ImportError:
from typing_extensions import Literal # noqa: F401
from thinc.api import Optimizer # noqa: F401 from thinc.api import Optimizer # noqa: F401
pickle = pickle pickle = pickle

View File

@ -2,6 +2,7 @@ from typing import Optional, List
from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops from thinc.api import Model, chain, list2array, Linear, zero_init, use_ops
from thinc.types import Floats2d from thinc.types import Floats2d
from ...compat import Literal
from ...util import registry from ...util import registry
from .._precomputable_affine import PrecomputableAffine from .._precomputable_affine import PrecomputableAffine
from ..tb_framework import TransitionModel from ..tb_framework import TransitionModel
@ -11,7 +12,7 @@ from ...tokens import Doc
@registry.architectures.register("spacy.TransitionBasedParser.v1") @registry.architectures.register("spacy.TransitionBasedParser.v1")
def build_tb_parser_model( def build_tb_parser_model(
tok2vec: Model[List[Doc], List[Floats2d]], tok2vec: Model[List[Doc], List[Floats2d]],
nr_feature_tokens: int, nr_feature_tokens: Literal[3, 6, 8, 13],
hidden_width: int, hidden_width: int,
maxout_pieces: int, maxout_pieces: int,
use_upper: bool = True, use_upper: bool = True,

View File

@ -67,7 +67,7 @@ width = ${components.tok2vec.model.width}
parser_config_string = """ parser_config_string = """
[model] [model]
@architectures = "spacy.TransitionBasedParser.v1" @architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 99 nr_feature_tokens = 3
hidden_width = 66 hidden_width = 66
maxout_pieces = 2 maxout_pieces = 2
@ -95,7 +95,7 @@ def my_parser():
MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2), MaxoutWindowEncoder(width=321, window_size=3, maxout_pieces=4, depth=2),
) )
parser = build_tb_parser_model( parser = build_tb_parser_model(
tok2vec=tok2vec, nr_feature_tokens=7, hidden_width=65, maxout_pieces=5 tok2vec=tok2vec, nr_feature_tokens=8, hidden_width=65, maxout_pieces=5
) )
return parser return parser
@ -340,3 +340,13 @@ def test_config_auto_fill_extra_fields():
assert "extra" not in nlp.config["training"] assert "extra" not in nlp.config["training"]
# Make sure the config generated is valid # Make sure the config generated is valid
load_model_from_config(nlp.config) load_model_from_config(nlp.config)
def test_config_validate_literal():
nlp = English()
config = Config().from_str(parser_config_string)
config["model"]["nr_feature_tokens"] = 666
with pytest.raises(ConfigValidationError):
nlp.add_pipe("parser", config=config)
config["model"]["nr_feature_tokens"] = 13
nlp.add_pipe("parser", config=config)