mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-03 11:50:19 +03:00
Add tok2vec rehearse
This commit is contained in:
parent
f9e020dd67
commit
77cf0ee75d
|
@ -1337,9 +1337,18 @@ class Language:
|
|||
ops = get_current_ops()
|
||||
if self.vocab.vectors.shape[1] >= 1:
|
||||
self.vocab.vectors.to_ops(ops)
|
||||
|
||||
# Create rehearsal models
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "_rehearsal_model"):
|
||||
proc._rehearsal_model = deepcopy(proc.model) # type: ignore[attr-defined]
|
||||
|
||||
# Link listeners from rehearsal models to Tok2Vec components
|
||||
for i, (name1, proc1) in enumerate(self.pipeline):
|
||||
if isinstance(proc1, ty.ListenedToComponent):
|
||||
for name2, proc2 in self.pipeline[i + 1 :]:
|
||||
proc1.find_listeners(proc2)
|
||||
|
||||
if sgd is not None:
|
||||
self._optimizer = sgd
|
||||
elif self._optimizer is None:
|
||||
|
|
|
@ -59,6 +59,7 @@ class Tok2Vec(TrainablePipe):
|
|||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self._rehearsal_model = None
|
||||
self.name = name
|
||||
self.listener_map: Dict[str, List["Tok2VecListener"]] = {}
|
||||
self.cfg: Dict[str, Any] = {}
|
||||
|
@ -108,6 +109,11 @@ class Tok2Vec(TrainablePipe):
|
|||
for node in component.model.walk():
|
||||
if isinstance(node, Tok2VecListener) and node.upstream_name in names:
|
||||
self.add_listener(node, component.name)
|
||||
# Make sure to link to Tok2VecListeners from rehearsal models
|
||||
if isinstance(getattr(component, "_rehearsal_model", None), Model):
|
||||
for node in component._rehearsal_model.walk():
|
||||
if isinstance(node, Tok2VecListener) and node.upstream_name in names:
|
||||
self.add_listener(node, component.name + "_rehearsal_model")
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||
|
@ -191,6 +197,57 @@ class Tok2Vec(TrainablePipe):
|
|||
self.listeners[-1].receive(batch_id, tokvecs, backprop)
|
||||
return losses
|
||||
|
||||
def rehearse(
|
||||
self,
|
||||
examples: Iterable[Example],
|
||||
*,
|
||||
drop: float = 0.0,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
):
|
||||
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
|
||||
teach the current model to make predictions similar to an initial model,
|
||||
to try to address the "catastrophic forgetting" problem. This feature is
|
||||
experimental.
|
||||
|
||||
examples (Iterable[Example]): A batch of Example objects.
|
||||
drop (float): The dropout rate.
|
||||
sgd (thinc.api.Optimizer): The optimizer.
|
||||
losses (Dict[str, float]): Optional record of the loss during training.
|
||||
Updated using the component name as the key.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary.
|
||||
|
||||
DOCS: https://spacy.io/api/tok2vec#rehearse
|
||||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
if self._rehearsal_model is None:
|
||||
return losses
|
||||
validate_examples(examples, "Tok2Vec.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
set_dropout_rate(self.model, drop)
|
||||
tokvecs, bp_tokvecs = self.model.begin_update(docs)
|
||||
target, _ = self._rehearsal_model.begin_update(docs)
|
||||
d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
|
||||
losses.setdefault(self.name, 0.0)
|
||||
|
||||
for i in range(len(target)):
|
||||
d_tokvecs[i] += target[i]
|
||||
losses[self.name] += float((target[i] ** 2).sum())
|
||||
|
||||
def empty_backprop(_):
|
||||
return [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
|
||||
|
||||
batch_id = Tok2VecListener.get_batch_id(docs)
|
||||
for listener in self.listeners:
|
||||
listener.receive(batch_id, tokvecs, empty_backprop)
|
||||
|
||||
bp_tokvecs(d_tokvecs)
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
|
||||
return losses
|
||||
|
||||
def get_loss(self, examples, scores) -> None:
|
||||
pass
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import pytest
|
||||
import spacy
|
||||
|
||||
from thinc.api import Config
|
||||
from typing import List
|
||||
from spacy.training import Example
|
||||
|
||||
|
@ -148,6 +149,86 @@ REHEARSE_DATA = [
|
|||
),
|
||||
]
|
||||
|
||||
TEXTCAT_MULTILABEL_LISTENER_CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","textcat_multilabel"]
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
[components]
|
||||
[components.textcat_multilabel]
|
||||
factory = "textcat_multilabel"
|
||||
threshold = 0.5
|
||||
[components.textcat_multilabel.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v2"
|
||||
nO = null
|
||||
[components.textcat_multilabel.model.linear_model]
|
||||
@architectures = "spacy.TextCatBOW.v2"
|
||||
exclusive_classes = false
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
[components.textcat_multilabel.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = 64
|
||||
upstream = "*"
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = 64
|
||||
attrs = ["ORTH", "SHAPE"]
|
||||
rows = [5000, 2500]
|
||||
include_static_vectors = true
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MishWindowEncoder.v2"
|
||||
width = 64
|
||||
depth = 4
|
||||
window_size = 1
|
||||
"""
|
||||
|
||||
NER_LISTENER_CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec","ner"]
|
||||
batch_size = 1000
|
||||
[components]
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v2"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||
rows = [5000, 1000, 2500, 2500]
|
||||
include_static_vectors = false
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
[components.ner.model]
|
||||
@architectures = "spacy.TransitionBasedParser.v2"
|
||||
state_type = "ner"
|
||||
extra_state_tokens = false
|
||||
hidden_width = 64
|
||||
maxout_pieces = 2
|
||||
use_upper = true
|
||||
nO = null
|
||||
[components.ner.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode.width}
|
||||
"""
|
||||
|
||||
|
||||
def _add_ner_label(ner, data):
|
||||
for _, annotations in data:
|
||||
|
@ -197,7 +278,11 @@ def _optimize(nlp, component: str, data: List, rehearse: bool):
|
|||
doc = nlp.make_doc(text)
|
||||
example = Example.from_dict(doc, annotation)
|
||||
if rehearse:
|
||||
nlp.rehearse([example], sgd=optimizer)
|
||||
nlp.update([example], sgd=None)
|
||||
nlp.rehearse([example], sgd=None)
|
||||
for name, proc in nlp.pipeline:
|
||||
if proc.is_trainable and proc.model not in (True, False, None):
|
||||
proc.finish_update(optimizer)
|
||||
else:
|
||||
nlp.update([example], sgd=optimizer)
|
||||
return nlp
|
||||
|
@ -209,3 +294,21 @@ def test_rehearse(component):
|
|||
nlp.add_pipe(component)
|
||||
nlp = _optimize(nlp, component, TRAIN_DATA, False)
|
||||
_optimize(nlp, component, REHEARSE_DATA, True)
|
||||
|
||||
|
||||
@pytest.mark.issue(12044)
|
||||
def test_rehearse_textcat_multilabel_listener():
|
||||
"""Test nlp.rehearse on a textcat_multilabel pipeline with a tok2vec listener"""
|
||||
config = Config().from_str(TEXTCAT_MULTILABEL_LISTENER_CONFIG)
|
||||
nlp = spacy.blank("en", config=config)
|
||||
nlp = _optimize(nlp, "textcat_multilabel", TRAIN_DATA, False)
|
||||
_optimize(nlp, "textcat_multilabel", REHEARSE_DATA, True)
|
||||
|
||||
|
||||
@pytest.mark.issue(12044)
|
||||
def test_rehearse_ner_listener():
|
||||
"""Test nlp.rehearse on a ner pipeline with a tok2vec listener"""
|
||||
config = Config().from_str(NER_LISTENER_CONFIG)
|
||||
nlp = spacy.blank("en", config=config)
|
||||
nlp = _optimize(nlp, "ner", TRAIN_DATA, False)
|
||||
_optimize(nlp, "ner", REHEARSE_DATA, True)
|
||||
|
|
|
@ -205,6 +205,31 @@ Delegates to [`predict`](/api/tok2vec#predict).
|
|||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Tok2Vec.rehearse {id="rehearse",tag="method,experimental",version="3.5.1"}
|
||||
|
||||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||||
current model to make predictions similar to an initial model, to try to address
|
||||
the "catastrophic forgetting" problem. Please note that `Tok2Vec.rehearse` needs to be used together with `Tok2Vec.update`. This feature is experimental.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> tok2vec = nlp.add_pipe("tok2vec")
|
||||
> optimizer = nlp.resume_training()
|
||||
> update_losses = tok2vec.update(examples, sgd=None)
|
||||
> rehearse_losses = tok2vec.rehearse(examples, sgd=None)
|
||||
> tok2vec.finish_update(optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Dictionary to update with the loss, keyed by pipeline component. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## Tok2Vec.create_optimizer {id="create_optimizer",tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
|
Loading…
Reference in New Issue
Block a user