mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-13 21:26:58 +03:00
* Update conll_train script
This commit is contained in:
parent
fab538672e
commit
77f2b218f9
|
@ -87,15 +87,15 @@ def _parse_line(line):
|
||||||
|
|
||||||
|
|
||||||
def score_model(nlp, gold_tuples, verbose=False):
|
def score_model(nlp, gold_tuples, verbose=False):
|
||||||
scorer = Scorer()
|
correct = 0.0
|
||||||
|
total = 0.0
|
||||||
for words, gold_tags in gold_tuples:
|
for words, gold_tags in gold_tuples:
|
||||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||||
nlp.tagger(tokens)
|
nlp.tagger(tokens)
|
||||||
for token, gold in zip(tokens, gold_tags):
|
for token, gold in zip(tokens, gold_tags):
|
||||||
scorer.tags.tp += token.tag_ == gold
|
correct += token.tag_ == gold
|
||||||
scorer.tags.fp += token.tag_ != gold
|
total += 1
|
||||||
scorer.tags.fn += token.tag_ != gold
|
return (correct / total) * 100
|
||||||
return scorer.tags_acc
|
|
||||||
|
|
||||||
|
|
||||||
def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
||||||
|
@ -116,8 +116,6 @@ def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
||||||
random.shuffle(train_sents)
|
random.shuffle(train_sents)
|
||||||
heldout_sents = train_sents[:int(nr_train * 0.1)]
|
heldout_sents = train_sents[:int(nr_train * 0.1)]
|
||||||
train_sents = train_sents[len(heldout_sents):]
|
train_sents = train_sents[len(heldout_sents):]
|
||||||
#train_sents = train_sents[:500]
|
|
||||||
#assert len(heldout_sents) < len(train_sents)
|
|
||||||
prev_score = 0.0
|
prev_score = 0.0
|
||||||
variance = 0.001
|
variance = 0.001
|
||||||
last_good_learn_rate = nlp.tagger.model.eta
|
last_good_learn_rate = nlp.tagger.model.eta
|
||||||
|
@ -130,15 +128,15 @@ def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
||||||
acc += nlp.tagger.train(tokens, gold_tags)
|
acc += nlp.tagger.train(tokens, gold_tags)
|
||||||
total += len(tokens)
|
total += len(tokens)
|
||||||
n += 1
|
n += 1
|
||||||
if n and n % 10000 == 0:
|
if n and n % 20000 == 0:
|
||||||
dev_score = score_model(nlp, heldout_sents)
|
dev_score = score_model(nlp, heldout_sents)
|
||||||
eval_score = score_model(nlp, dev_sents)
|
eval_score = score_model(nlp, dev_sents)
|
||||||
if dev_score > prev_score:
|
if dev_score >= prev_score:
|
||||||
nlp.tagger.model.keep_update()
|
nlp.tagger.model.keep_update()
|
||||||
prev_score = dev_score
|
prev_score = dev_score
|
||||||
variance = 0.001
|
variance = 0.001
|
||||||
last_good_learn_rate = nlp.tagger.model.eta
|
last_good_learn_rate = nlp.tagger.model.eta
|
||||||
nlp.tagger.model.eta *= 1.05
|
nlp.tagger.model.eta *= 1.01
|
||||||
print('%d:\t%.3f\t%.3f\t%.3f\t%.4f' % (n, acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
print('%d:\t%.3f\t%.3f\t%.3f\t%.4f' % (n, acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
||||||
else:
|
else:
|
||||||
nlp.tagger.model.backtrack()
|
nlp.tagger.model.backtrack()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user