From 7946464742b8654c4815e3d6565b12e97d90437b Mon Sep 17 00:00:00 2001
From: ines <ines@ines.io>
Date: Fri, 27 Oct 2017 19:45:04 +0200
Subject: [PATCH] Remove spacy.tagger (now in pipeline)

---
 setup.py         |   1 -
 spacy/tagger.pxd |  17 ----
 spacy/tagger.pyx | 253 -----------------------------------------------
 3 files changed, 271 deletions(-)
 delete mode 100644 spacy/tagger.pxd
 delete mode 100644 spacy/tagger.pyx

diff --git a/setup.py b/setup.py
index f7525a3ff..78b1f6c86 100755
--- a/setup.py
+++ b/setup.py
@@ -24,7 +24,6 @@ MOD_NAMES = [
     'spacy.vocab',
     'spacy.attrs',
     'spacy.morphology',
-    'spacy.tagger',
     'spacy.pipeline',
     'spacy.syntax.stateclass',
     'spacy.syntax._state',
diff --git a/spacy/tagger.pxd b/spacy/tagger.pxd
deleted file mode 100644
index 6d2cef1f4..000000000
--- a/spacy/tagger.pxd
+++ /dev/null
@@ -1,17 +0,0 @@
-from thinc.linear.avgtron cimport AveragedPerceptron
-from thinc.extra.eg cimport Example
-from thinc.structs cimport ExampleC
-
-from .structs cimport TokenC
-from .vocab cimport Vocab
-
-
-cdef class TaggerModel(AveragedPerceptron):
-    cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
- 
-
-cdef class Tagger:
-    cdef readonly Vocab vocab
-    cdef readonly TaggerModel model
-    cdef public dict freqs
-    cdef public object cfg
diff --git a/spacy/tagger.pyx b/spacy/tagger.pyx
deleted file mode 100644
index 0fadea15d..000000000
--- a/spacy/tagger.pyx
+++ /dev/null
@@ -1,253 +0,0 @@
-# coding: utf8
-from __future__ import unicode_literals
-
-from collections import defaultdict
-
-from cymem.cymem cimport Pool
-from thinc.typedefs cimport atom_t
-from thinc.extra.eg cimport Example
-from thinc.structs cimport ExampleC
-from thinc.linear.avgtron cimport AveragedPerceptron
-from thinc.linalg cimport VecVec
-
-from .tokens.doc cimport Doc
-from .attrs cimport TAG
-from .gold cimport GoldParse
-from .attrs cimport *
-
-
-cpdef enum:
-    P2_orth
-    P2_cluster
-    P2_shape
-    P2_prefix
-    P2_suffix
-    P2_pos
-    P2_lemma
-    P2_flags
-
-    P1_orth
-    P1_cluster
-    P1_shape
-    P1_prefix
-    P1_suffix
-    P1_pos
-    P1_lemma
-    P1_flags
-
-    W_orth
-    W_cluster
-    W_shape
-    W_prefix
-    W_suffix
-    W_pos
-    W_lemma
-    W_flags
-
-    N1_orth
-    N1_cluster
-    N1_shape
-    N1_prefix
-    N1_suffix
-    N1_pos
-    N1_lemma
-    N1_flags
-
-    N2_orth
-    N2_cluster
-    N2_shape
-    N2_prefix
-    N2_suffix
-    N2_pos
-    N2_lemma
-    N2_flags
-
-    N_CONTEXT_FIELDS
-
-
-cdef class TaggerModel(AveragedPerceptron):
-    def update(self, Example eg):
-        self.time += 1
-        guess = eg.guess
-        best = VecVec.arg_max_if_zero(eg.c.scores, eg.c.costs, eg.c.nr_class)
-        if guess != best:
-            for feat in eg.c.features[:eg.c.nr_feat]:
-                self.update_weight(feat.key, best, -feat.value)
-                self.update_weight(feat.key, guess, feat.value)
-
-    cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
-        _fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
-        _fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
-        _fill_from_token(&eg.atoms[W_orth], &tokens[i])
-        _fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
-        _fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
-
-        eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
-
-
-cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
-    context[0] = t.lex.lower
-    context[1] = t.lex.cluster
-    context[2] = t.lex.shape
-    context[3] = t.lex.prefix
-    context[4] = t.lex.suffix
-    context[5] = t.tag
-    context[6] = t.lemma
-    if t.lex.flags & (1 << IS_ALPHA):
-        context[7] = 1
-    elif t.lex.flags & (1 << IS_PUNCT):
-        context[7] = 2
-    elif t.lex.flags & (1 << LIKE_URL):
-        context[7] = 3
-    elif t.lex.flags & (1 << LIKE_NUM):
-        context[7] = 4
-    else:
-        context[7] = 0
-
-
-cdef class Tagger:
-    """Annotate part-of-speech tags on Doc objects."""
-
-    def __init__(self, Vocab vocab, TaggerModel model=None, **cfg):
-        """Create a Tagger.
-
-        vocab (Vocab): The vocabulary object. Must be shared with documents to
-            be processed.
-        model (thinc.linear.AveragedPerceptron): The statistical model.
-        RETURNS (Tagger): The newly constructed object.
-        """
-        if model is None:
-            model = TaggerModel(cfg.get('features', self.feature_templates),
-                                L1=0.0)
-        self.vocab = vocab
-        self.model = model
-        self.model.l1_penalty = 0.0
-        # TODO: Move this to tag map
-        self.freqs = {TAG: defaultdict(int)}
-        for tag in self.tag_names:
-            self.freqs[TAG][self.vocab.strings[tag]] = 1
-        self.freqs[TAG][0] = 1
-        self.cfg = cfg
-
-    @property
-    def tag_names(self):
-        return self.vocab.morphology.tag_names
-
-    def __reduce__(self):
-        return (self.__class__, (self.vocab, self.model), None, None)
-
-    def tag_from_strings(self, Doc tokens, object tag_strs):
-        cdef int i
-        for i in range(tokens.length):
-            self.vocab.morphology.assign_tag(&tokens.c[i], tag_strs[i])
-        tokens.is_tagged = True
-        tokens._py_tokens = [None] * tokens.length
-
-    def __call__(self, Doc tokens):
-        """Apply the tagger, setting the POS tags onto the Doc object.
-
-        doc (Doc): The tokens to be tagged.
-        """
-        if tokens.length == 0:
-            return 0
-
-        cdef Pool mem = Pool()
-
-        cdef int i, tag
-        cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
-                                  nr_class=self.vocab.morphology.n_tags,
-                                  nr_feat=self.model.nr_feat)
-        for i in range(tokens.length):
-            if tokens.c[i].pos == 0:
-                self.model.set_featuresC(&eg.c, tokens.c, i)
-                self.model.set_scoresC(eg.c.scores,
-                    eg.c.features, eg.c.nr_feat)
-                guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
-                self.vocab.morphology.assign_tag_id(&tokens.c[i], guess)
-                eg.fill_scores(0, eg.c.nr_class)
-        tokens.is_tagged = True
-        tokens._py_tokens = [None] * tokens.length
-
-    def pipe(self, stream, batch_size=1000, n_threads=2):
-        """Tag a stream of documents.
-
-        Arguments:
-        stream: The sequence of documents to tag.
-        batch_size (int): The number of documents to accumulate into a working set.
-        n_threads (int): The number of threads with which to work on the buffer
-            in parallel, if the Matcher implementation supports multi-threading.
-        YIELDS (Doc): Documents, in order.
-        """
-        for doc in stream:
-            self(doc)
-            yield doc
-
-    def update(self, Doc tokens, GoldParse gold, itn=0):
-        """Update the statistical model, with tags supplied for the given document.
-
-        doc (Doc): The document to update on.
-        gold (GoldParse): Manager for the gold-standard tags.
-        RETURNS (int): Number of tags predicted correctly.
-        """
-        gold_tag_strs = gold.tags
-        assert len(tokens) == len(gold_tag_strs)
-        for tag in gold_tag_strs:
-            if tag != None and tag not in self.tag_names:
-                msg = ("Unrecognized gold tag: %s. tag_map.json must contain all "
-                       "gold tags, to maintain coarse-grained mapping.")
-                raise ValueError(msg % tag)
-        golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
-        cdef int correct = 0
-        cdef Pool mem = Pool()
-        cdef Example eg = Example(
-            nr_atom=N_CONTEXT_FIELDS,
-            nr_class=self.vocab.morphology.n_tags,
-            nr_feat=self.model.nr_feat)
-        for i in range(tokens.length):
-            self.model.set_featuresC(&eg.c, tokens.c, i)
-            eg.costs = [ 1 if golds[i] not in (c, -1) else 0 for c in xrange(eg.nr_class) ]
-            self.model.set_scoresC(eg.c.scores,
-                eg.c.features, eg.c.nr_feat)
-            self.model.update(eg)
-
-            self.vocab.morphology.assign_tag_id(&tokens.c[i], eg.guess)
-
-            correct += eg.cost == 0
-            self.freqs[TAG][tokens.c[i].tag] += 1
-            eg.fill_scores(0, eg.c.nr_class)
-            eg.fill_costs(0, eg.c.nr_class)
-        tokens.is_tagged = True
-        tokens._py_tokens = [None] * tokens.length
-        return correct
-
-
-    feature_templates = (
-        (W_orth,),
-        (P1_lemma, P1_pos),
-        (P2_lemma, P2_pos),
-        (N1_orth,),
-        (N2_orth,),
-
-        (W_suffix,),
-        (W_prefix,),
-
-        (P1_pos,),
-        (P2_pos,),
-        (P1_pos, P2_pos),
-        (P1_pos, W_orth),
-        (P1_suffix,),
-        (N1_suffix,),
-
-        (W_shape,),
-        (W_cluster,),
-        (N1_cluster,),
-        (N2_cluster,),
-        (P1_cluster,),
-        (P2_cluster,),
-
-        (W_flags,),
-        (N1_flags,),
-        (N2_flags,),
-        (P1_flags,),
-        (P2_flags,),
-    )